Skip to main content

Boron Imaging: Localized Quantitative Detection and Imaging of Boron by Magnetic Resonance

  • Chapter
  • First Online:

Abstract

This chapter provides the background for understanding the current status of progress towards establishing nuclear magnetic resonance (NMR), applied as magnetic resonance imaging (MRI) and localized spectroscopy or spectroscopic imaging (MRS, MRSI), as a viable method for the noninvasive, in vivo imaging of compounds used in BNCT. The underlying physical principles are presented, and the progress is reviewed, covering not only the direct detection of Boron (10B or 11B), but also other nuclear species in the BNCT agents that are amenable for NMR detection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bendel P (2005) Biomedical applications of 10B and 11B NMR. NMR Biomed 18:74–82

    Article  PubMed  CAS  Google Scholar 

  2. Bendel P, Sauerwein W (2001) Optimal detection of the neutron capture therapy agent borocaptate sodium (BSH): a comparison between 1H and 10B NMR. Med Phys 28:178–183

    Article  PubMed  CAS  Google Scholar 

  3. Bendel P, Zilberstein J, Salomon Y (1994) In vivo detection of a boron neutron capture therapy agent in melanoma by proton observed 1H-10B double resonance. Magn Reson Med 32:170–174

    Article  PubMed  CAS  Google Scholar 

  4. Bendel P, Zilberstein J, Salomon Y, Frantz A, Reddy NK, Kabalka GW (1997) Quantitative in vivo NMR detection of BSH and 19F-BPA in a mouse melanoma model. In: Larsson B, Crawford J, Weinreich R (eds) Advances in neutron capture therapy, vol II, Chemistry and biology. Elsevier, Amsterdam

    Google Scholar 

  5. Bendel P, Frantz A, Zilberstein J, Kabalka GW, Salomon Y (1998) Boron-11 NMR of borocaptate: relaxation and in vivo detection in melanoma-bearing mice. Magn Reson Med 39:439–447

    Article  PubMed  CAS  Google Scholar 

  6. Bendel P, Koudinova N, Salomon Y (2001) In vivo imaging of the neutron capture therapy agent BSH in mice using 10B MRI. Magn Reson Med 46:13–17

    Article  PubMed  CAS  Google Scholar 

  7. Bendel P, Koudinova N, Salomon Y, Hideghéty K, Sauerwein W (2002) Imaging of BSH by 10B MRI. In: Sauerwein W, Moss R, Wittig A (eds) Research and development in neutron capture therapy. Monduzzi, Bologna

    Google Scholar 

  8. Bendel P, Margalit R, Koudinova N, Salomon Y (2005) Noninvasive quantitative in vivo mapping and metabolism of boronophenylalanine (BPA) by nuclear magnetic resonance (NMR) spectroscopy and imaging. Rad Res 164:680–687

    Article  CAS  Google Scholar 

  9. Bendel P, Margalit R, Salomon Y (2005) Optimized 1H MRS and MRSI methods for the in vivo detection of boronophenylalanine. Magn Reson Med 53:1166–1171

    Article  PubMed  CAS  Google Scholar 

  10. Bradshaw KM, Schweizer MP, Glover GH, Hadley JR, Tippets R, Tang PP, Davis WL, Heilbrun MP, Johnson S, Ghanem T (1995) BSH distributions in the canine head and a human patient using 11B MRI. Magn Reson Med 34:48–56

    Article  PubMed  CAS  Google Scholar 

  11. Callaghan PT (1993) Principles of nuclear magnetic resonance microscopy. Clarendon, Oxford

    Google Scholar 

  12. Capuani S, Porcari P, Fasano F, Campanella R, Maraviglia B (2008) 10B-editing 1H-detection and 19F MRI strategies to optimize boron neutron capture therapy. Mag Res Imag 26:987–993

    Article  CAS  Google Scholar 

  13. De Luca F, Campanella R, Bifone A, Maraviglia B (1991) Boron-10 double resonance spatial NMR detection. Chem Phys Lett 186:303–306

    Article  Google Scholar 

  14. Hofmann B, Fischer CO, Lawaczeck R, Platzek J, Semmler W (1999) Gadolinium neutron capture therapy (GdNCT) of melanoma cells and solid tumors with the magnetic resonance imaging contrast agent Gadobutrol. Invest Radiol 34:126–133

    Article  PubMed  CAS  Google Scholar 

  15. Hoult DI, Lauterbur PC (1979) The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34:425–433

    CAS  Google Scholar 

  16. Hoult DI, Richards RE (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24:71–85

    Google Scholar 

  17. Imahori Y, Ueda S, Ohmori Y, Kusuki T, Ono K, Fujii R, Ido T (1998) Fluorine-18 labeled fluoroboronophenylalanine PET in patients with glioma. J Nucl Med 39:325–333

    PubMed  CAS  Google Scholar 

  18. Kabalka GW, Davis M, Bendel P (1988) Boron-11 MRI and MRS of intact animals infused with a boron neutron capture therapy agent. Magn Reson Med 8:231–237

    Article  PubMed  CAS  Google Scholar 

  19. Nakamura H, Fukuda H, Girald F, Kobayashi T, Hiratsuka J, Akaizawa T, Nemoto H, Cai J, Yoshida K, Yamamoto Y (2000) In vivo evaluation of carborane gadolinium-DPTA complex as an MR imaging boron carrier. Chem Pharm Bull 48:1034–1038

    Article  PubMed  CAS  Google Scholar 

  20. Nichols TL, Kabalka GW, Miller LF, Khan MK, Smith GT (2002) Improved treatment planning for boron neutron capture therapy for glioblastoma multiforme using fluorine-18 labeled boronophenylalanine and positron emission tomography. Med Phys 29:2351–2358

    Article  PubMed  CAS  Google Scholar 

  21. Panov V, Salomon Y, Kabalka GW, Bendel P (2000) Uptake and washout of borocaptate sodium and borono-phenylalanine in cultured melanoma cells: a multi-nuclear NMR study. Rad Res 154:104–112

    Article  CAS  Google Scholar 

  22. Porcari P, Capuani S, D’Amore E, Lecce M, La Bella A, Fasano F, Campanella R, Migneco LM, Pastore FS, Maraviglia B (2008) In vivo 19F MRI and 19F MRS of 19F-labelled boronophenylalanine–fructose complex on a C6 rat glioma model to optimize boron neutron capture therapy (BNCT). Phys Med Biol 53:6979–6989

    Article  PubMed  CAS  Google Scholar 

  23. Tatham AT, Nakamura H, Wiener EC, Yamamoto Y (1999) Relaxation properties of a dual-labeled probe for MRI and neutron capture therapy. Magn Reson Med 42:32–36

    Article  PubMed  CAS  Google Scholar 

  24. Zuo CS, Prasad PV, Busse P, Tang L, Zamenhof RG (1999) Proton nuclear magnetic resonance measurement of p-boronophenylalanine (BPA): a therapeutic agent for boron neutron capture therapy. Med Phys 26:1230–1236

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bendel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bendel, P. (2012). Boron Imaging: Localized Quantitative Detection and Imaging of Boron by Magnetic Resonance. In: Sauerwein, W., Wittig, A., Moss, R., Nakagawa, Y. (eds) Neutron Capture Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31334-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31334-9_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31333-2

  • Online ISBN: 978-3-642-31334-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics