Skip to main content

Biodegradable Metals: State of the Art

  • Chapter
  • First Online:
Biodegradable Metals

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

Degradable biomaterials constitute a novel class of bioactive biomaterials which are expected to support healing process of a diseased tissue and to degrade thereafter. Two classes of metals have been proposed: magnesium- and iron-based alloys. Three targeted applications are envisaged: orthopaedic, cardiovascular and pediatric implants. Conceptually, biodegradable metals should provide a temporary support on healing process and should progressively degrade thereafter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ASM (2005) ASM handbook, vol 2: Properties and selection: nonferrous alloys & special purpose materials. ASM International, Materials Park

    Google Scholar 

  • ASTM (2001) ASTM B 80: standard specification for magnesium-alloy sand castings. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM (2003) ASTM F 138: standard specification for wrought 18chromium-14nickel-2.5molybdenum stainless steel bar and wire for surgical implants (UNS S31673). ASTM International, West Conshohocken

    Google Scholar 

  • Chen S, Guan S, Li W, Wang H, Chen J, Wang Y (2012) In vivo degradation and bone response of a composite coating on Mg-Zn-Ca alloy prepared by microarc oxidation and electrochemical deposition. J Biomed Mater Res B 100:533–543

    Google Scholar 

  • Chng CB, Lau DP, Choo JQ, Chui CK (2012) Bio-absorbable micro-clip for laryngeal microsurgery—design and evaluation. Acta Biomater. doi:10.1016/j.actbio.2012.1003.1051

    Google Scholar 

  • Di Mario C, Griffiths H, Goktekin O, Peeters N, Verbist J, Bosiers M, Deloose K, Heublein B, Rohde R, Kasese V, Ilsley C, Erbel R (2004) Drug-eluting bioabsorbable magnesium stent. J Interv Cardiol 17:391–395

    Article  Google Scholar 

  • El-Omar MM, Dangas G, Iakovou I, Mehran R (2001) Update on in-stent restenosis. Curr Interv Cardiol Rep 3:296–305

    Google Scholar 

  • Erdmann N, Angrisani N, Reifenrath J, Lucas A, Thorey F, Bormann D, Meyer-Lindenberg A (2011) Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: a comparative in vivo study in rabbits. Acta Biomater 7:1421–1428

    Article  CAS  Google Scholar 

  • Goodfellow (2010) Iron (Fe)—material information (2010) Goodfellow Corp. http://www.goodfellow.com/csp/active/STATIC/A/Iron.HTML. Accessed 5 December 2010

  • Hänzi AC, Sologubenko AS, Uggowitzer PJ (2009) Design strategy for microalloyed ultra-ductile magnesium alloys for medical applications. Mater Sci Forum 618–619:75–82

    Article  Google Scholar 

  • Hänzi AC, Metlar A, Schinhammer M, Aguib H, Lüth TC, Löffler JF, Uggowitzer PJ (2011) Biodegradable wound-closing devices for gastrointestinal interventions: degradation performance of the magnesium tip. Mater Sci Eng C 31:1098–1103

    Article  Google Scholar 

  • Hermawan H, Mantovani D (2009) Degradable metallic biomaterials: the concept, current developments and future directions. Minerva Biotecnol 21:207–216

    Google Scholar 

  • Hermawan H, Mantovani D (2011) New generation of medical implants: metallic biodegradable coronary stent. In: 2nd international conference on instrumentation, communications, information technology, and biomedical engineering (ICICI-BME), Bandung, 8–9 November 2011, pp 399–402

    Google Scholar 

  • Hermawan H, Alamdari H, Mantovani D, Dubé D (2008) Iron-manganese: new class of degradable metallic biomaterials prepared by powder metallurgy. Powder Metall 51:38–45

    Article  CAS  Google Scholar 

  • Hermawan H, Dube D, Mantovani D (2010) Developments in metallic biodegradable stents. Acta Biomater 6:1693–1697

    Article  CAS  Google Scholar 

  • Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A (2003) Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology. Heart 89:651–656

    Article  CAS  Google Scholar 

  • Kannan MB, Raman RKS (2008) In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials 29:2306–2314

    Article  CAS  Google Scholar 

  • Kraus T, Fischerauer SF, Hänzi AC, Uggowitzer PJ, Löffler JF, Weinberg AM (2012) Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater 8:1230–1238

    Article  CAS  Google Scholar 

  • Levesque J, Dube D, Fiset M, Mantovani D (2003) Investigation of corrosion behaviour of magnesium alloy AM60B-F under pseudo-physiological conditions. Mater Sci Forum 426–432:521–526

    Article  Google Scholar 

  • Li Z, Gu X, Lou S, Zheng Y (2008) The development of binary Mg-Ca alloys for use as biodegradable materials within bones. Biomaterials 29:1329–1344

    Article  CAS  Google Scholar 

  • Peeters P, Bosiers M, Verbist J, Deloose K, Heublein B (2005) Preliminary results after application of absorbable metal stents in patients with critical limb ischemia. J Endovasc Ther 12:1–5

    Article  Google Scholar 

  • Peuster M, Wohlsein P, Brugmann M, Ehlerding M, Seidler K, Fink C, Brauer H, Fischer A, Hausdorf G (2001) A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart 86:563–569

    Article  CAS  Google Scholar 

  • Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, Schnakenburg CV (2006) Long term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27:4955–4962

    Article  CAS  Google Scholar 

  • Schinhammer M, Hänzi AC, Löffler JF, Uggowitzer PJ (2010) Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater 6:1705–1713

    Article  CAS  Google Scholar 

  • Schomig A, Kastrati A, Mudra H, Blasini R, Schuhlen H, Klauss V, Richardt G, Neumann FJ (1994) Four-year experience with Palmaz-Schatz stenting in coronary angioplasty complicated by dissection with threatened or present vessel closure. Circulation 90:2716–2724

    Article  CAS  Google Scholar 

  • Serruys PW, Kutryk MJ, Ong AT (2006) Coronary-artery stents. N Engl J Med 354:483–495

    Article  CAS  Google Scholar 

  • Stack RS, Califf RM, Phillips HR, Pryor DB, Quigley PJ, Bauman RP, Tcheng JE, Greenfield JC Jr (1988) Interventional cardiac catheterization at Duke Medical Center. Am J Cardiol 62:3F–24F

    Article  CAS  Google Scholar 

  • Tamai H, Igaki K, Kyo E, Kosuga K, Kawashima A, Matsui S, Komori H, Tsuji T, Motohara S, Uehata H (2000) Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102:399–404

    Article  CAS  Google Scholar 

  • United States Patent and Trademark Office (2011). http://www.uspto.gov. Accessed 30 Oct 2011

  • US National Library of Medicine and the National Institutes of Health (2011). http://www.ncbi.nlm.nih.gov/pubmed. Accessed 30 Oct 2011

  • van der Giessen WJ, Lincoff AM, Schwartz RS, van Beusekom HM, Serruys PW, Holmes DR Jr, Ellis SG, Topol EJ (1996) Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 94:1690–1697

    Article  Google Scholar 

  • Waksman R, Pakala R, Kuchulakanti PK, Baffour R, Hellinga D, Seabron R, Tio FO, Wittchow E, Hartwig S, Harder C, Rohde R, Heublein B, Andreae A, Waldmann K-H, Haverich A (2006) Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheter Cardiovasc Interv 68:606–617

    Google Scholar 

  • Waksman R, Pakala R, Baffour R, Seabron R, Hellinga D, Tio FO (2008) Short-term effects of biocorrodible iron stents in porcine coronary arteries. J Interv Cardiol 21:15–20

    Article  Google Scholar 

  • Witte F, Kaese V, Haferkamp H, Switzer E, Linderberg AM, Wirth CJ, Windhagen H (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26:3557–3563

    Article  CAS  Google Scholar 

  • Xin Y, Liu C, Zhang X, Tang G, Tian X, Chu PK (2007) Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. J Mater Res 22:2004–2011

    Article  CAS  Google Scholar 

  • Zhang E, Yang L (2008) Microstructure, mechanical properties and bio-corrosion properties of Mg-Zn-Mn-Ca alloy for biomedical application. Mater Sci Eng, A 497:111–118

    Article  Google Scholar 

  • Zhang E, Xu L, Yu G, Pan F, Yang K (2009) In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J Biomed Mater Res A 90:882–893

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendra Hermawan .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Hermawan, H. (2012). Biodegradable Metals: State of the Art. In: Biodegradable Metals. SpringerBriefs in Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31170-3_2

Download citation

Publish with us

Policies and ethics