Skip to main content

Deterministic Local Algorithms, Unique Identifiers, and Fractional Graph Colouring

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7355))

Abstract

We show that for any α > 1 there exists a deterministic distributed algorithm that finds a fractional graph colouring of length at most α(Δ + 1) in any graph in one synchronous communication round; here Δ is the maximum degree of the graph. The result is near-tight, as there are graphs in which the optimal solution has length Δ + 1.

The result is, of course, too good to be true. The usual definitions of scheduling problems (fractional graph colouring, fractional domatic partition, etc.) in a distributed setting leave a loophole that can be exploited in the design of distributed algorithms: the size of the local output is not bounded. Our algorithm produces an output that seems to be perfectly good by the usual standards but it is impractical, as the schedule of each node consists of a very large number of short periods of activity.

More generally, the algorithm shows that when we study distributed algorithms for scheduling problems, we can choose virtually any trade-off between the following three parameters: T, the running time of the algorithm, ℓ, the length of the schedule, and κ, the maximum number of periods of activity for a any single node. Here ℓ is the objective function of the optimisation problem, while κ captures the “subjective” quality of the solution. If we study, for example, bounded-degree graphs, we can trivially keep T and κ constant, at the cost of a large ℓ, or we can keep κ and ℓ constant, at the cost of a large T. Our algorithm shows that yet another trade-off is possible: we can keep T and ℓ constant at the cost of a large κ.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bollobás, B.: The independence ratio of regular graphs. Proceedings of the American Mathematical Society 83(2), 433–436 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal parallel list ranking. Information and Control 70(1), 32–53 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. In: Proc. 31st Symposium on Principles of Distributed Computing, PODC 2012 (2012)

    Google Scholar 

  4. Hirvonen, J., Suomela, J.: Distributed maximal matching: greedy is optimal. In: Proc. 31st Symposium on Principles of Distributed Computing, PODC 2012 (2012)

    Google Scholar 

  5. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: Proc. 23rd Symposium on Principles of Distributed Computing (PODC 2004), pp. 300–309. ACM Press, New York (2004)

    Google Scholar 

  6. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: Proc. 17th Symposium on Discrete Algorithms (SODA 2006), pp. 980–989. ACM Press, New York (2006)

    Chapter  Google Scholar 

  7. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: Lower and upper bounds (2010) (manuscript) arXiv:1011.5470 [cs.DC]

    Google Scholar 

  8. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Computing 24(6), 1259–1277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  10. Shearer, J.B.: A note on the independence number of triangle-free graphs. Discrete Mathematics 46(1), 83–87 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Suomela, J.: Survey of local algorithms. ACM Computing Surveys (2011), http://www.cs.helsinki.fi/local-survey/ (to appear)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hasemann, H., Hirvonen, J., Rybicki, J., Suomela, J. (2012). Deterministic Local Algorithms, Unique Identifiers, and Fractional Graph Colouring. In: Even, G., Halldórsson, M.M. (eds) Structural Information and Communication Complexity. SIROCCO 2012. Lecture Notes in Computer Science, vol 7355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31104-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31104-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31103-1

  • Online ISBN: 978-3-642-31104-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics