Skip to main content

Measurement of Gas Hydrate by Laser Raman Spectrometry

  • Chapter
  • First Online:
Natural Gas Hydrates

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

Raman spectrometry is a powerful tool for gas hydrate researches to provide vital information regarding the structure of the hydrate, hydrate composition, and cage occupancy. This chapter begins with discussing the basic knowledge and application of laser Raman spectrometry and then, giving the techniques and methods which have been developed in our laboratory for different experiments of gas hydrate with Raman. The techniques and methods are used for measuring hydration number of methane hydrate prepared under different conditions; investigating the Raman spectra characteristics of air, nitrogen, and oxygen hydrates; and observing methane hydrate dissociation in sediments with different particle sizes. Observation of the microprocesses of hydrate formation and dissociation is also carried out based on a low-temperature high-pressure device for in situ Raman detection. The methods are also successfully used to determinate the natural gas hydrate samples collected from Shenhu area of the South China Sea and from Qilian Mountain permafrost area, respectively, providing microscopic evidences for gas hydrate existence in the sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ren Bin, Li Xiaoqin, Xie Yong, et al. Application of confocal microprobe Raman spectroscopy in the analysis of interfaces. Spectrosc Spectr Anal. 2000;20(5):648–51.

    Google Scholar 

  2. Yao Lintao, Liu Muhua, Liu Daojin, et al. Advances in inspecting agricultural products quality using laser technology. Acta Laser Biol Sinica. 2007;16(3):370–3.

    Google Scholar 

  3. Qin Chaojian, Qiu Yuzhuo, Zhou Guofu, et al. Laser Raman spectroscopic analysis of Bayan Obo carbonatite dykes and its petrogenetic significance. Acta Miner Sinica. 2007;27(3):400–5.

    Google Scholar 

  4. Qiaosong Huang, Zhaoxian Yu, Jing Li. Microscopic Raman spectral imaging of oily core. Spectrosc Spectr Anal. 2008;28(12):2880–4.

    Google Scholar 

  5. Fan Hongrui, Tao Kejie, Xie Yihan, et al. Laser Raman spectroscopy of typical rare-earth fluoro-carbonate minerals in Bayan Obo REE-Fe-Nb deposit and identification of rare-earth daughter minerals hosted in fluid inclusions. Acta Pet Sinica. 2003;19(1):169–72.

    Google Scholar 

  6. Zhang Meizhen, Shi Weijun, Zhang Zhirong. Laser Raman microscope and its application in geology. Pet Geol Exp. 2008;30(3):301–10.

    Google Scholar 

  7. He Mouchun, Lv Xinbiao, Liu Yanrong. Elementary investigation on the application of laser Raman microprobe in petroleum exploration. Spectrosc Spectr Anal. 2004;24(11):1363–6.

    Google Scholar 

  8. Yang Qun, Wang Yilin. Raman spectra of fossil dinosaurs from different regions. Spectrosc Spectr Anal. 2007;27(12):2468–71.

    Google Scholar 

  9. Xiao Yilin, Zhang Zhang, Qian Xiaofan. Micro-Raman and fluorescence spectra of several agrochemicals. Spectrosc Spectr Anal. 2004;24(5):579–82.

    Google Scholar 

  10. Wu Xiaoqiong, Zheng Jianzhen, Liu Wenhan, et al. Quantitative determination of glucose by internal standard laser Raman spectra. Spectrosc Spectr Analy. 2007;27(7):1344–6.

    Google Scholar 

  11. Liu Wenhan, Yang Mo, Xiaoqiong Wu, et al. Direct determination of ethanol by laser Raman spectra with internal standard method. Chin J Anal Chem. 2007;35(3):416–8.

    Google Scholar 

  12. Liu Wenhan, Yang Mo, Xiaoqiong Wu, et al. Direct quantitative determination of methanol by laser Raman spectrometry with internal standard method. Chin J Anal Chem. 2007;35(10):1503–5.

    Article  Google Scholar 

  13. Uchida T, Takeya S, Kamata Y, et al. Spectroscopic observation and thermodynamic calculation on clathrate hydrates of mixed gas containing methane and ethane: determination of structure, composition and cage occupancy. J Phys Chem. 2002;106:12426–31.

    Article  Google Scholar 

  14. Sloan Jr ED. Fundamental principles and applications of natural gas hydrates. Nature. 2003;426:353–63.

    Article  Google Scholar 

  15. Sum AK, Burruss RC, Sloan Jr ED. Measurement of clathrate hydrates via Raman spectroscopy. J Phys Chem B. 1997;101:7371–2.

    Article  Google Scholar 

  16. Subramanian S, Sloan Jr ED. Molecular measurements of methane hydrate formation. Fluid Phase Equilib. 1999;813:158–60.

    Google Scholar 

  17. Chazallon B, Focsa C, Charlou JL, et al. A comparative Raman spectroscopic study of natural gas hydrates collected at different geological sites. Chem Geol. 2007;244:175–85.

    Article  Google Scholar 

  18. Uchida T, Hirano T, Ebinuma T, et al. Raman spectroscopic determination of hydration number of methane hydrates. A I Ch E J. 1999;45(12):2641–5.

    Article  Google Scholar 

  19. Ballard AL, Sloan ED Jr. Optimizing thermodynamic parameters to match methane and ethane structural transition in natural gas hydrate equilibria. In: Proceedings of the Third International Conference on Natural Gas Hydrates, vol. 13. New York: New York Academy of Sciences; 2000, p. 702.

    Google Scholar 

  20. Komai T, Kang SP, Yoon JH, et al. In situ Raman spectroscopy investigation of the dissociation of methane hydrate at temperatures just below the ice point. J Phys Chem B. 2004;108:8062–8.

    Article  Google Scholar 

  21. Kawamura T, Ohga K, Higuchi K. Dissociation behavior of pellet-shaped methane-ethane mixed gas hydrate samples. Energy Fuel. 2003;17(3):614–8.

    Article  Google Scholar 

  22. Taylor CE, Link DD, Niall E. Methane hydrate research at NETL: research to make methane production from hydrates a reality. J Pet Sci Eng. 2007;56:186–91.

    Article  Google Scholar 

  23. Sloan Jr ED. Clathrate hydrates of natural gases. 2nd ed. New York: Marcel Dekker; 1998. p. 9–64.

    Google Scholar 

  24. Kvenvolden KA. Potential effects of gas hydrate on human. Proc Natl Acad Sci. 1999;96:3420–6.

    Article  Google Scholar 

  25. Collett TS. Energy resource potential of natural gas hydrate. AAPG Bull. 2002;86:1971–92.

    Google Scholar 

  26. Liu Changling, Ye Yuguang, Meng Qingguo. Determination of hydration number of methane hydrates using micro-laser Raman spectroscopy. Spectrosc Spectr Anal. 2010;30(4):963–6.

    Google Scholar 

  27. Uchida T, Moriwaki M, Takeya S, et al. Two-step formation of methane–propane mixed gas hydrate in a batch-type reactor. A I CH E J. 2004;50(2):518–23.

    Article  Google Scholar 

  28. Ripmeester JA, Ratcliffe CI. Application of xenon-129 NMR to the study of microporous solids. J Phys Chem. 1990;94:7652–6.

    Article  Google Scholar 

  29. Davidson DW, Handa YP, Ratcliffe CI, et al. Crystallographic studies of clathrate hydrates. Mol Cryst Liq Cryst. 1986;141(1):141–9.

    Article  Google Scholar 

  30. Shoji H, Langway Jr CC. Air hydrate inclusions in fresh ice core. Nature. 1982;298(5874):548–9.

    Article  Google Scholar 

  31. Liu Changling, Ye Yuguang, Lu Hailong, et al. Formation and Raman spectroscopic characteristics of nitrogen, oxygen and air hydrates. Geoscience. 2008;22(3):480–4.

    Google Scholar 

  32. Liu C, Lu H, Ye Y. Raman spectroscopy of nitrogen clathrate hydrates. Chin J Chem Phys. 2009;22(4):353–8.

    Article  Google Scholar 

  33. Champagnon B, Pamczer G, Chazallon B, et al. Nitrogen and oxygen guest molecules in clathrate hydrates: different sites revealed by Raman spectroscopy. J Raman Spectrosc. 1997;28(9):711–5.

    Article  Google Scholar 

  34. Ikeda T, Fukazawa H, Mae S, et al. Extreme fractionation of gases caused by formation of clathrate hydrates in Vostok Antarctic ice. Geophys Res Lett. 1999;26(1):91–4.

    Article  Google Scholar 

  35. Pauer F, Kipfstuhl J, Kuhs WF. Raman spectroscopic study on the nitrogen/oxygen ratio in natural ice clathrates in the GRIP ice core. Geophys Res Lett. 1995;22(8):969.

    Article  Google Scholar 

  36. Pauer F, Kipfstuhl J, Kuhs WF. Raman spectroscopic study on the spatial distribution of nitrogen and oxygen in natural ice clathrates and their decomposition to air bubbles. Geophys Res Lett. 1996;23(2):1712.

    Article  Google Scholar 

  37. Pauer F, Kipfstuhl J, Kuhs WF. Raman spectroscopic and statistical studies on natural clathrates from the Greenland Ice Core Project ice core, and neutron diffraction studies on synthetic nitrogen clathrates. J Geophys Res. 1997;102(C12):26519–26.

    Article  Google Scholar 

  38. Hondoh T, Anzai H, Goto A, et al. The crystallographic structure of the natural air-hydrate in Greenland Dye-3 deep ice core. J Incl Phenom Mol Recognit Chem. 1990;8(1–2):112–24.

    Google Scholar 

  39. Van Cleeff A, Diepen AM. Gas hydrates of nitrogen and oxygen II. Recl Trav Chim. 1965;84:1085–93.

    Article  Google Scholar 

  40. Meng Qingguo, Liu Changling, Ye Yuguang, Xia Ning. In-situ observation on methane hydrate decomposition process by laser Raman spectrometry. Nat Gas Ind. 2010;30(6):117–20.

    Google Scholar 

  41. Liu Changling, Ye Yuguang, Meng Qingguo, Lv Wanjun, Wang Feifei. In-situ observation on methane hydrate formation and decomposition microprocess by microscopic laser Raman spectrometry. Spectrosc Spectr Anal. 2011;31(5):1–5.

    Google Scholar 

  42. Parent JS, Bishnoi PR. Chem Eng Commun. 1996;144:51.

    Article  Google Scholar 

  43. Link DD, Ladner EP, Elsen HA. Fluid Phase Equilib. 2003;211:1.

    Article  Google Scholar 

  44. Zhang BY, Wu Q, Sun DL. J China Univ Min Technol. 2008;18(1):18–21.

    Article  Google Scholar 

  45. Liu Changling, Lu Hailong, Ye Yuguang, et al. Raman spectroscopic observations on the structural characteristics and dissociation behavior of methane hydrate synthesized in silica sands with various sizes. Energy Fuel. 2008;22(6):3986–8.

    Article  Google Scholar 

  46. Zhu Y, Zhang Y, Wen H, et al. Gas Hydrates in the Qilian Mountain Permafrost, Qinghai, Northwest China. Acta Geol Sinica. 2010;84(1):1–10.

    Article  Google Scholar 

  47. Liu Changling, Ye Yuguang, Meng Qingguo. Raman spectroscopic characteristics of natural gas hydrate recovered from Shenhu area in South China Sea and Qilian Mountain permafrost. Acta Chim Sinica. 2010;68(18):1881–6.

    Google Scholar 

  48. Tulk CA, Ripmeester JA, Klug DD. The application of Raman spectroscopy to the study of gas hydrates. NYAS. 2000;912:859–72.

    Article  Google Scholar 

  49. Kuhs WF, Chazallon B, Klapproth A, et al. Filling isotherms in clathrate hydrates. Rev High Press Sci Technol. 1998;7:1141–9.

    Article  Google Scholar 

  50. Udachin KA, Ratcliffe CI, Ripmeester JA. Structure, composition and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements. J Phys Chem B. 2001;105(19):4200–3.

    Article  Google Scholar 

  51. Schicks J, Erzinger J, Ziemann MA. Raman spectra of gas hydrates—differences and analogies to ice 1h and (gas saturated) water. Spectrochim Acta Part A. 2005;61:2399–403.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changling Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, C., Meng, Q., Ye, Y. (2013). Measurement of Gas Hydrate by Laser Raman Spectrometry. In: Ye, Y., Liu, C. (eds) Natural Gas Hydrates. Springer Geophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31101-7_12

Download citation

Publish with us

Policies and ethics