Skip to main content

Size Effect-Enabled Methods

  • Chapter
  • First Online:
Micro Metal Forming

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

  • 2207 Accesses

Abstract

Micro metal forming requires rather thin parts as the wrought material. Typical thicknesses for sheets are in the range of 10–50 µm. Such sheets can be produced by cold rolling. Common materials, which can be rolled down to such low thicknesses, are for example aluminum (Al99.5), low carbon steel, stainless steel or copper (E58). These materials are available in large quantities at moderate prices. Aluminum foil is for example not only used for the packaging of food but also for thermal insulation, cables and electronics. These materials are work hardened during the cold rolling process and are annealed afterwards to recover their original material properties. All these materials mentioned are rather soft and pliable. This diminishes their potential as construction materials for micro parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

cp :

Heat capacity (J/(kg K))

d:

Diameter (mm)

ES:

Surface energy (J)

F:

Force (N)

kf :

Yield stress (MPa)

l:

Length (mm)

P:

Power (W)

Q:

Heat (J)

q:

Latent heat (J/kg)

r:

Radius (mm)

t:

Time (s)

T:

Temperature [°C (K)]

TD :

Deposition temperature [°C (K)]

TM :

Melting temperature [°C (K)]

u:

Upset ratio (-)

v:

Velocity (mm/s)

V:

Volume (m³)

α:

Absorption coefficient (-)

γ:

Surface tension (N/m)

η:

Efficiency (-)

Φ:

Amplitude (-)

 :

Divergence angle (°)

λ:

Wavelength (m)

ρ:

Density (kg/m³)

θ :

Focus diameter (mm)

σM :

Tensile strength (MPa)

σN :

Nominal stress (MPa)

φ:

Natural strain (-)

References

  1. American Society for Metals: ASM Handbook: Heat Treating. vol. 4, pp. 866 (1991)

    Google Scholar 

  2. Barna, P.B., Adamik, M.: Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films 317, 27–33 (1998)

    Article  Google Scholar 

  3. Bergmann, L., Schaefer, C.: Lehrbuch der Experimentalphysik Band 1 Mechani Relativität Wärme. Gruyter, Berlin (1998)

    Google Scholar 

  4. Beyer, E.: Schweißen mit dem Laser: Grundlagen (Laser in Technik und Forschung). Springer, Berlin (1995)

    Book  Google Scholar 

  5. Brüning, H., Vollertsen, F.: Formability of micro material preforms generated by laser melting. In: Hinduja, S., Li L. (eds.) Proceedings of the 37th International MATADOR Conference, pp. 373–376. Springer, London (2012)

    Google Scholar 

  6. Bull, S.J.: Correlation of microstructure and properties of hard coatings. Vacuum 43, 387–391 (1992)

    Article  Google Scholar 

  7. Chapman, B.: Glow Discharge Processes. Wiley, New York (1980)

    Google Scholar 

  8. Demura, M., Kishida, K., Suga, Y., Takanashi, M., Hirano, T.: Fabrication of thin Ni3Al foils by cold rolling. Scripta Mater. 47, 267–272 (2002)

    Article  Google Scholar 

  9. Doege, E., Behrens, B.-A.: Handbuch Umformtechnik. Springer, Berlin (2007)

    Google Scholar 

  10. Ilschner, B., Singer, R.F.: Werkstoffwissenschaften und Fertigungstechnik. Springer, Berlin (2001)

    Google Scholar 

  11. Kelly, P.J., Arnell, R.D.: Development of a novel structure zone model relating to the closed-field unbalanced magnetron sputtering system. J. Vac. Sci. Technol. A 16, 2858–2869 (1998)

    Article  Google Scholar 

  12. Lange, K.: Umformtechnik: Band 2: Massivumformung. Springer, Berlin (1988)

    Google Scholar 

  13. Messier, R., Giri, A.P., Roy, R.A.: Revised structure zone model for thin film physical structure. J. Vac. Sci. Technol. A 2, 500–503 (1984)

    Article  Google Scholar 

  14. Meßner, A.: Kaltmassivumformung metallischer Kleinstteile: Werkstoffverhalten, Wirkflächenreibung, Prozessauslegung. Meisenbach, Bamberg (1998)

    Google Scholar 

  15. Movchan, B.A., Demchishin, A.V.: Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide. Fiz. Met. i Metallovedeniye 28, 653–660 (1969)

    Google Scholar 

  16. Poprawe, R.: Lasertechnik für die Fertigung. Springer, Berlin (2005)

    Google Scholar 

  17. Royset, J., Ryum, N.: Scandium in aluminium alloys. Intern Mater. Rev. 50, 19–44 (2005)

    Article  Google Scholar 

  18. Sproul, W.D., Christie, D.J., Carter, D.C., Tomasel, F., Linz, T.: Pulsed plasmas for sputtering applications. Surf. Eng. 20, 174–176 (2004)

    Article  Google Scholar 

  19. Thornton, J.A.: Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings. J. Vac. Sci. Technol. A 12, 830–835 (1975)

    Article  Google Scholar 

  20. Vollertsen, F.: Size effects in Micro Forming (2011). In: 14th International conference on sheet metal (2011). Key engineering materials, vol. 473, pp. 3–12 (2010)

    Google Scholar 

  21. Vollertsen, F., Walther, R.: Energy balance in laser-based free form heading. Ann CIRP 57, 291–294 (2008)

    Article  Google Scholar 

  22. Walther, R., Zverev, M., Vollertsen, F. Enhanced Model for Energy balance in laser based free form heading (2008). In: 1st International Conference on Nanomanufacturing (nanoMan2008)

    Google Scholar 

  23. Weißbach, W.: Werkstoffkunde Strukturen Eigenschaften Prüfung. Vieweg & Teubner, Wiesbaden (2010)

    Google Scholar 

  24. Yu, H.-L., Liu, X.-H., Lee, G.-T., Park, H.-D.: Numerical analysis of strip edge drop for Sendzimir mill. J. Mater. Process. Technol. 208, 42–52 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heinz-Rolf Stock , Heinz-Rolf Stock or Heiko Brüning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stock, HR. (2013). Size Effect-Enabled Methods. In: Vollertsen, F. (eds) Micro Metal Forming. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30916-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30916-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30915-1

  • Online ISBN: 978-3-642-30916-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics