Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 809 Accesses

Abstract

In the previous chapter we have shown that the IDIS model is a simple yet accurate model for predicting and studying energy level alignment at metal-organic interfaces, that appear in new organic electronic devices like OLEDs. However there are other systems where metal-organic interaction takes place, but are not an infinite metal-organic interface. This is the case of molecular electronics devices (where an organic molecule is attached to two metallic electrodes) , or individual molecules deposited over surfaces at extremely low coverage . It should be desirable to extend our model to those kind of systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As for example in [17], Sect. 5.8.2.

References

  1. B. Xu, N.J. Tao, Measurement of single-molecule resistance by repeated formation of molecular junctions. Science. 301(5637), 1221 (2003)

    Google Scholar 

  2. N.J. Tao, Electron transport in molecular junctions. Nat. Nanotechnol. 1(3), 173 (2006)

    Google Scholar 

  3. M. Kiguchi, O. Tal, S. Wohlthat, F. Pauly, M. Krieger, D. Djukic, J. Cuevas, J. van Ruitenbeek, Highly Conductive Molecular Junctions Based on Direct Binding of Benzene to Platinum Electrodes. Phys. Rev. Lett. 101(4), 46801 (2008)

    Article  ADS  Google Scholar 

  4. M. Reed, C. Zhou, C. Muller, T. Burgin , J. Tour, Conductance of a molecular junction. Science .278(5336), 252 (1997)

    Google Scholar 

  5. M. Ruben, A. Landa, E. Lörtscher, H. Riel, M. Mayor, H. Görls, H.B. Weber, A. Arnold, F. Evers, Charge transport through a cardan-joint molecule. Small . 4(12), 2229 (2008)

    Google Scholar 

  6. X. Lu, M. Grobis, K. Khoo, S. Louie , M. Crommie, Charge transfer and screening in individual C60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study. Phys. Rev.B.70(11)115418 (2004).

    Google Scholar 

  7. A. Maeland, T. Flanagan, Lattice spacings of gold-palladium alloys. Can. J. Phys. 42(11), 2364 (1964)

    Google Scholar 

  8. J. Sau, J. Neaton, H. Choi, S. Louie , M. Cohen, Electronic Energy Levels of Weakly Coupled Nanostructures: C60-Metal Interfaces. Phys. Rev. Lett.101(2), 26804 (2008)

    Google Scholar 

  9. H. Vázquez, Energy level alignment at organic semiconductor interfaces. Ph.D. thesis, Universidad Autónoma de Madrid, 2006

    Google Scholar 

  10. F. Flores, J. Ortega, H. Vázquez, Modelling energy level alignment at organic interfaces and density functional theory. Phys. Chem. Chem. Phys. 11(39), 8658 (2009)

    Google Scholar 

  11. E. Abad, C. González, J. Ortega , F. Flores, Charging energy, self-interaction correction and transport energy gap for a nanogap organic molecular junction. Org. Electron.11(2), 332 (2010)

    Google Scholar 

  12. J. Palacios, Coulomb blockade in electron transport through a C60 molecule from first principles. Phys. Rev.B. 72(12), 125424 (2005).

    Google Scholar 

  13. J. Palacios, A. Pérez-Jiménez, E. Louis , J. Vergés, Fullerene-based molecular nanobridges:A first-principles study. Phys. Rev.B. 64(11), 115411 (2001)

    Google Scholar 

  14. N. Sergueev, A.A. Demkov, H. Guo, Inelastic resonant tunneling in \(\rm C_{60}\) molecular junctions. Phys. Rev. B .75, 233418 (2007)

    Google Scholar 

  15. C. González, J. Ortega, F. Flores, D. Martínez-Martín , J. Gómez-Herrero, Initial Stages of the Contact between a Metallic Tip and Carbon Nanotubes. Phys. Rev. Lett.102(10), 106801 (2009)

    Google Scholar 

  16. E. Abad, J. Ortega , F. Flores, Metal/organic barrier formation for a C60/Au interface: from the molecular to the monolayer limit. Phys. Status Solidi A. 209, 636 (2012)

    Google Scholar 

  17. M. C. Desjonquères , D. Spanjaard, Concepts in Surface Physics. Springer-Verlag (1996)

    Google Scholar 

  18. E. Abad, J.I. Martínez, J. Ortega, F. Flores, Barrier formation and charging energy for a variable nanogap organic molecular junction: a tip/C60 /Au(111) configuration. J. Phys. Condens. Matter 22(30), 304007 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Abad .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abad, E. (2013). The IDIS Model at the Molecular Limit. In: Energy Level Alignment and Electron Transport Through Metal/Organic Contacts. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30907-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30907-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30906-9

  • Online ISBN: 978-3-642-30907-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics