Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7370))

Abstract

I discuss three aspects of mathematical cryptography that have been themes of Mike Fellows’ work: applications of parameterized complexity, combinatorial systems, and Kid Krypto. At times my treatment is anecdotal, and on occasion it veers toward the impractical, fanciful, and even downright goofy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12, 125–134 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alwen, J., Dodis, Y., Wichs, D.: Leakage-Resilient Public-Key Cryptography in the Bounded-Retrieval Model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-Key Encryption in the Bounded-Retrieval Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Bell, T., Fellows, M.R., Koblitz, N., Powell, M., Thimbleby, H., Witten, I.: Explaining cryptographic systems to the general public. Computers and Education 40, 199–215 (2003)

    Article  Google Scholar 

  5. Brassard, G.: A note on the complexity of cryptography. IEEE Trans. Information Theory 25, 232–233 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brickell, E.F.: Breaking Iterated Knapsacks. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 342–358. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  7. Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R.J., Walfish, S.: Intrusion-Resilient Key Exchange in the Bounded Retrieval Model. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 479–498. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly Secure Password Protocols in the Bounded Retrieval Model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 225–244. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Information Theory 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dziembowski, S.: Intrusion-Resilience Via the Bounded-Storage Model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Fellows, M.R., Koblitz, A.H., Koblitz, N.: Cultural aspects of math education reform. Notices of the Amer. Math. Soc. 41, 5–9 (1994)

    Google Scholar 

  12. Fellows, M.R., Koblitz, N.: Fixed-parameter Complexity and Cryptography. In: Moreno, O., Cohen, G., Mora, T. (eds.) AAECC 1993. LNCS, vol. 673, pp. 121–131. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  13. Fellows, M.R., Koblitz, N.: Combinatorially based cryptography for children (and adults). In: Proc. 24th Southeastern Intern. Conf. Combinatorics, Graph Theory and Computing, Boca Raton, Florida (February 1993); Congressus Numerantium 99, 9–41 (1994)

    Google Scholar 

  14. Fellows, M.R., Koblitz, N.: Combinatorial cryptosystems galore! In: Finite Fields: Theory, Applications, and Algorithms, Second Intern. Conf. Finite Fields, Las Vegas (August 1993); Contemporary Math. 168, 51–61 (1994)

    Google Scholar 

  15. Fellows, M.R., Koblitz, N.: Kid Krypto. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 371–389. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  16. Katz, J.: Signature schemes with bounded leakage resilience, http://eprint.iacr.org/2009/220.pdf

  17. Koblitz, A.H.: A Convergence of Lives: Sofia Kovalevskaia — Scientist, Writer, Revolutionary. Birkhaüser (1983)

    Google Scholar 

  18. Koblitz, N.: Cryptography as a teaching tool. Cryptologia 21, 317–326 (1997)

    Article  MATH  Google Scholar 

  19. Koblitz, N.: Algebraic Aspects of Cryptography. Springer (1998)

    Google Scholar 

  20. Koblitz, N.: The uneasy relationship between mathematics and cryptography. Notices of the Amer. Math. Soc. 54, 972–979 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Koblitz, N.: Secret codes and online security: A seminar for entering students. Cryptologia 34, 145–154 (2010)

    Article  MATH  Google Scholar 

  22. Koblitz, N.: Random Curves: Journeys of a Mathematician. Springer (2007)

    Google Scholar 

  23. Koblitz, N., Menezes, A.J.: Another look at security definitions (to appear), http://anotherlook.ca

  24. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Annals Math. 126, 649–673 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lund, C., Fortnow, L., Karkoff, H., Nisan, N.: Algebraic methods for interactive proof systems. In: Proc. 31st IEEE Symp. on Foundations of Computer Science, pp. 2–10 (1990)

    Google Scholar 

  26. Merkle, R., Hellman, M.: Hiding information and signatures in trapdoor knapsacks. IEEE Trans. Information Theory 24, 525–530 (1978)

    Article  Google Scholar 

  27. Odlyzko, A.: The rise and fall of knapsack crpyptosystems. In: Cryptology and Computational Number Theory, Proc. Symp. Appl. Math., vol. 42, pp. 75–88. Amer. Math. Soc. (1990)

    Google Scholar 

  28. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Selman, A.L.: Complexity issues in cryptography. In: Computational Complexity Theory, Proc. Symp. Appl. Math., vol. 38, pp. 92–107. Amer. Math. Soc. (1988)

    Google Scholar 

  30. Shamir, A.: A polynomial time algorithm for breaking the basic Merkle Hellman cryptosystem. IEEE Trans. Information Theory 30, 699–704 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. Steinwandt, R., Geiselmann, W., Endsuleit, R.: Attacking a polynomial-based cryptosystem: Polly Cracker. Intern. J. Information Security 1, 143–148 (2002)

    Article  MATH  Google Scholar 

  32. van Oorschot, P.: A comparison of practical public-key cryptosystems based on integer factorization and discrete logarithm. In: Simmons, G. (ed.) Contemporary Cryptology: The Science of Information Integrity, pp. 289–322. IEEE Press (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koblitz, N. (2012). Crypto Galore!. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds) The Multivariate Algorithmic Revolution and Beyond. Lecture Notes in Computer Science, vol 7370. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30891-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30891-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30890-1

  • Online ISBN: 978-3-642-30891-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics