Skip to main content

The Mate-in-n Problem of Infinite Chess Is Decidable

  • Conference paper
Book cover How the World Computes (CiE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7318))

Included in the following conference series:

Abstract

The mate-in-n problem of infinite chess—chess played on an infinite edgeless board—is the problem of determining whether a designated player can force a win from a given finite position in at most n moves. Although a straightforward formulation of this problem leads to assertions of high arithmetic complexity, with 2n alternating quantifiers, the main theorem of this article nevertheless confirms a conjecture of the second author and C. D. A. Evans by establishing that it is computably decidable, uniformly in the position and in n. Furthermore, there is a computable strategy for optimal play from such mate-in-n positions. The proof proceeds by showing that the mate-in-n problem is expressible in what we call the first-order structure of chess \(\mathord{\frak{Ch}}\), which we prove (in the relevant fragment) is an automatic structure, whose theory is therefore decidable. The structure is also definable in Presburger arithmetic. Unfortunately, this resolution of the mate-in-n problem does not appear to settle the decidability of the more general winning-position problem, the problem of determining whether a designated player has a winning strategy from a given position, since a position may admit a winning strategy without any bound on the number of moves required. This issue is connected with transfinite game values in infinite chess, and the exact value of the omega one of chess \(\omega_1^{\rm chess}\) is not known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blumensath, A., Grädel, E.: Automatic structures. In: 15th Annual IEEE Symposium on Logic in Computer Science, Santa Barbara, CA, pp. 51–62. IEEE Comput. Soc. Press, Los Alamitos (2000), http://dx.doi.org/10.1109/LICS.2000.855755

    Google Scholar 

  2. Evans, C.D., Hamkins, J.D., Woodin, W.H.: Transfinite game values in infinite chess (in preparation)

    Google Scholar 

  3. Fraenkel, A.S., Lichtenstein, D.: Computing a perfect strategy for n×n chess requires time exponential in n. J. Combin. Theory Ser. A 31(2), 199–214 (1981), http://dx.doi.org/10.1016/0097-31658190016-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Khoussainov, B., Minnes, M.: Three lectures on automatic structures. In: Logic Colloquium 2007. Lect. Notes Log, vol. 35, pp. 132–176. Assoc. Symbol. Logic, La Jolla (2010)

    Chapter  Google Scholar 

  5. Khoussainov, B., Nerode, A.: Automatic Presentations of Structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  6. Stanley (mathoverflow.net/users/2807), R.: Decidability of chess on an infinite board. MathOverflow, http://mathoverflow.net/questions/27967 (version: July 20, 2010)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brumleve, D., Hamkins, J.D., Schlicht, P. (2012). The Mate-in-n Problem of Infinite Chess Is Decidable. In: Cooper, S.B., Dawar, A., Löwe, B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, vol 7318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30870-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30870-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30869-7

  • Online ISBN: 978-3-642-30870-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics