Skip to main content

Bioinformatic Methods to Discover Cis-regulatory Elements in mRNAs

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

Cis-regulatory elements play a number of important roles in determining the fate of messenger RNAs (mRNAs). Due to these elements, mRNAs may be translated with remarkable efficiency, or destroyed with little translation. Untranslated regions cover over a third of a typical human mRNA and often contain a range of regulatory elements. Some elements along with their RNA or protein binding partners are well characterized, though many are not. These require different types of bioinformatic methods for identification and discovery. The most successful techniques combine a range of information and search strategies. Useful information may include conservation across species, prior biological knowledge, known false positives, or noisy high-throughput experimental data. This chapter focuses on current successful methods designed to discover elements with high sensitivity but low false-positive rates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

3-D:

three-dimensional

BLAST:

basic local alignment search tool

CDS:

coding sequence

CM:

covariance model

ChIP:

chromatin immunoprecipitation

DNA:

deoxyribonucleic acid

EST:

expressed sequence tag

FIRE:

finding informative regulatory element

GEO:

gene expression omnibus

HMM:

hidden Markov model

IRE:

iron responsive element

IUPAC:

International Union of Pure and Applied Chemistry

KH:

K homology

MAF:

multiple alignment format

MEME:

multiple expectation maximization for motif elicitation

MEMERIS:

multiple EM for motif elucidation in RNAs including secondary structures

MFE:

minimum free energy

NCBI:

National Center for Biotechnology Information

PDB:

protein data bank

PWM:

position weight matrix

RBPDb:

RNA-Binding Protein DataBase

RIP-chip:

RNA immunoprecipitation chip

RNA:

ribonucleic acid

RRM:

RNA recognition motif

SCFG:

stochastic context-free grammar

SCI:

structure conservation index

SECIS:

selenocysteine insertion sequence

SELEX:

systematic evolution of ligands by exponential enrichment

TFBS:

transcription factor binding site

UCSC:

University of California Santa Cruz

UTR:

untranslated regions

dsRNA:

double-strand RNA

log:

logistic regression

mRNA:

messenger RNA

miRNA:

microRNA

mirSVR:

micro support vector regression

ncRNA:

noncoding RNA

References

  1. C. Vogel: Translationʼs coming of age, Mol. Syst. Biol. 7, 498 (2011)

    Article  Google Scholar 

  2. S.A. Tenenbaum, J. Christiansen, H. Nielsen: The post-transcriptional operon, Methods Mol. Biol. 703, 237–245 (2011)

    Article  Google Scholar 

  3. D.J. Hogan, D.P. Riordan, A.P. Gerber, D. Herschlag, P.O. Brown: Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system, PLoS Biology 6, e255 (2008)

    Article  Google Scholar 

  4. M.J. Moore: From birth to death: The complex lives of eukaryotic mRNAs, Science 309, 1514–1518 (2005)

    Article  Google Scholar 

  5. P.A. Galante, D. Sandhu, R. de Sousa Abreu, M. Gradassi, N. Slager, C. Vogel, S.J. de Souza, L.O. Penalva: A comprehensive in silico expression analysis of RNA binding proteins in normal and tumor tissue: Identification of potential players in tumor formation, RNA Biology 6, 426–433 (2009)

    Article  Google Scholar 

  6. N.G. Tsvetanova, D.M. Klass, J. Salzman, P.O. Brown: Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae, PLoS One 5, e12671 (2010)

    Article  Google Scholar 

  7. D.P. Bartel: MicroRNAs: Target recognition and regulatory functions, Cell 136, 215–233 (2009)

    Article  Google Scholar 

  8. P. Chartrand, X.H. Meng, S. Huttelmaier, D. Donato, R.H. Singer: Asymmetric sorting of ash1p in yeast results from inhibition of translation by localization elements in the mRNA, Mol. Cell. 10, 1319–1330 (2002)

    Article  Google Scholar 

  9. M.W. Hentze, S.W. Caughman, T.A. Rouault, J.G. Barriocanal, A. Dancis, J.B. Harford, R.D. Klausner: Identification of the iron-responsive element for the translational regulation of human ferritin mRNA, Science 238, 1570–1573 (1987)

    Article  Google Scholar 

  10. S. Castellano, V.N. Gladyshev, R. Guigo, M.J. Berry: SelenoDB 1.0: A database of selenoprotein genes, proteins and SECIS elements, Nucleic Acids Res. 36, D332–338 (2008)

    Article  Google Scholar 

  11. M. Davila Lopez, T. Samuelsson: Early evolution of histone mRNA 3ʼ end processing, RNA 14, 1–10 (2008)

    Article  Google Scholar 

  12. S.G. Stevens, P.P. Gardner, C. Brown: Two covariance models for iron-responsive elements, RNA Biology 8, 792–801 (2011)

    Article  Google Scholar 

  13. R. Backofen, S.H. Bernhart, C. Flamm, C. Fried, G. Fritzsch, J. Hackermüller, J. Hertel, I.L. Hofacker, K. Missal, A. Mosig, S.J. Prohaska, D. Rose, P.F. Stadler, A. Tanzer, S. Washietl, S. Will: RNAs everywhere: Genome-wide annotation of structured RNAs, J. Exp. Zool. B 308, 1–25 (2007)

    Google Scholar 

  14. D.H. Mathews, W.N. Moss, D.H. Turner: Folding and finding RNA secondary structure, Cold Spring Harb. Perspect. Biol. 2, a003665 (2010)

    Article  Google Scholar 

  15. P.P. Gardner, J. Daub, J. Tate, B.L. Moore, I.H. Osuch, S. Griffiths-Jones, R.D. Finn, E.P. Nawrocki, D.L. Kolbe, S.R. Eddy, A. Bateman: Rfam: Wikipedia, clans and the "decimal" release, Nucleic Acids Res. 39, D141–145 (2011)

    Article  Google Scholar 

  16. M. Andronescu, V. Bereg, H.H. Hoos, A. Condon: RNA STRAND: The RNA secondary structure and statistical analysis database, BMC Bioinformatics 9, 340 (2008)

    Article  Google Scholar 

  17. K. Rother, M. Rother, M. Boniecki, T. Puton, J.M. Bujnicki: RNA and protein 3-D structure modeling: Similarities and differences, J. Mol. Model. 17, 2325–2336 (2011)

    Article  Google Scholar 

  18. J.G. Underwood, A.V. Uzilov, S. Katzman, C.S. Onodera, J.E. Mainzer, D.H. Mathews, T.M. Lowe, S.R. Salama, D. Haussler: FragSeq: Transcriptome-wide RNA structure probing using high-throughput sequencing, Nat. Methods 7, 995–1001 (2010)

    Article  Google Scholar 

  19. D.P. Riordan, D. Herschlag, P.O. Brown: Identification of RNA recognition elements in the Saccharomyces cerevisiae transcriptome, Nucleic Acids Res. 39, 1501–1509 (2011)

    Article  Google Scholar 

  20. Y. Wan, M. Kertesz, R.C. Spitale, E. Segal, H.Y. Chang: Understanding the transcriptome through RNA structure, Nat. Rev. Genet. 12, 641–655 (2011)

    Article  Google Scholar 

  21. S. Kishore, S. Luber, M. Zavolan: Deciphering the role of RNA-binding proteins in the post-transcriptional control of gene expression, Brief Funct. Genomics 9, 391–404 (2010)

    Article  Google Scholar 

  22. W.J. Kent, C.W. Sugnet, T.S. Furey, K.M. Roskin, T.H. Pringle, A.M. Zahler, D. Haussler: The human genome browser at UCSC, Genome Res. 12, 996–1006 (2002)

    Article  Google Scholar 

  23. T. Mituyama, K. Yamada, E. Hattori, H. Okida, Y. Ono, G. Terai, A. Yoshizawa, T. Komori, K. Asai: The Functional RNA Database 3.0: Databases to support mining and annotation of functional RNAs, Nucleic Acids Res. 37, D89–92 (2009)

    Article  Google Scholar 

  24. J. Goecks, A. Nekrutenko, J. Taylor: Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences, Genome Biol. 11, R86 (2010)

    Article  Google Scholar 

  25. J. Jurka: Repbase update: A database and an electronic journal of repetitive elements, Trends Genet. 16, 418–420 (2000)

    Article  Google Scholar 

  26. V. Matys, O.V. Kel-Margoulis, E. Fricke, I. Liebich, S. Land, A. Barre-Dirrie, I. Reuter, D. Chekmenev, M. Krull, K. Hornischer, N. Voss, P. Stegmaier, B. Lewicki-Potapov, H. Saxel, A.E. Kel, E. Wingender: TRANSFAC and its module TRANSCompel: Transcriptional gene regulation in eukaryotes, Nucleic Acids Res. 34, D108–110 (2006)

    Article  Google Scholar 

  27. J.C. Bryne, E. Valen, M.H. Tang, T. Marstrand, O. Winther, I. da Piedade, A. Krogh, B. Lenhard, A. Sandelin: JASPAR, the open access database of transcription factor-binding profiles: New content and tools in the 2008 update, Nucleic Acids Res. 36, D102–106 (2008)

    Article  Google Scholar 

  28. S. Mahony, P.V. Benos: STAMP: A web tool for exploring DNA-binding motif similarities, Nucleic Acids Res. 35, W253–258 (2007)

    Article  Google Scholar 

  29. K.D. Pruitt, T. Tatusova, W. Klimke, D.R. Maglott: NCBI Reference Sequences: Current status, policy and new initiatives, Nucleic Acids Res. 37, D32–36 (2009)

    Article  Google Scholar 

  30. G.H. Jacobs, A. Chen, S.G. Stevens, P.A. Stockwell, M.A. Black, W.P. Tate, C.M. Brown: Transterm: A database to aid the analysis of regulatory sequences in mRNAs, Nucleic Acids Res. 37, D72–76 (2009)

    Article  Google Scholar 

  31. G. Grillo, A. Turi, F. Licciulli, F. Mignone, S. Liuni, S. Banfi, V.A. Gennarino, D.S. Horner, G. Pavesi, E. Picardi, G. Pesole: UTRdb and UTRsite (RELEASE 2010): A collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs, Nucleic Acids Res. 38, D75–80 (2009)

    Article  Google Scholar 

  32. K.B. Cook, H. Kazan, K. Zuberi, Q. Morris, T.R. Hughes: RBPDB: A database of RNA-binding specificities, Nucleic Acids Res. 39, D301–308 (2010)

    Article  Google Scholar 

  33. B.P. Lewis, C.B. Burge, D.P. Bartel: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell 120, 15–20 (2005)

    Article  Google Scholar 

  34. A. Krek, D. Grun, M.N. Poy, R. Wolf, L. Rosenberg, E.J. Epstein, P. MacMenamin, I. da Piedade, K.C. Gunsalus, M. Stoffel, N. Rajewsky: Combinatorial microRNA target predictions, Nat. Genet. 37, 495–500 (2005)

    Article  Google Scholar 

  35. A. Kozomara, S. Griffiths-Jones: miRBase: Integrating microRNA annotation and deep-sequencing data, Nucleic Acids Res. 39, D152–157 (2010)

    Article  Google Scholar 

  36. D. Gaidatzis, E. van Nimwegen, J. Hausser, M. Zavolan: Inference of miRNA targets using evolutionary conservation and pathway analysis, BMC Bioinformatics 8, 69 (2007)

    Article  Google Scholar 

  37. T.L. Bailey, N. Williams, C. Misleh, W.W. Li: MEME: Discovering and analyzing DNA and protein sequence motifs, Nucleic Acids Res. 34, W369–373 (2006)

    Article  Google Scholar 

  38. G. Pavesi, G. Mauri, G. Pesole: An algorithm for finding signals of unknown length in DNA sequences, Bioinformatics 17(Suppl. 1), S207–214 (2001)

    Article  Google Scholar 

  39. I. Rigoutsos, A. Floratos: Combinatorial pattern discovery in biological sequences: The TEIRESIAS algorithm, Bioinformatics 14, 55–67 (1998)

    Article  Google Scholar 

  40. A.D. George, S.A. Tenenbaum: Web-based tools for studying RNA structure and function, Methods Mol. Biol. 703, 67–86 (2011)

    Article  Google Scholar 

  41. R.S. Hamilton, I. Davis: Identifying and searching for conserved RNA localisation signals, Methods Mol. Biol. 714, 447–466 (2011)

    Article  Google Scholar 

  42. Wikipedia: List of RNA structure prediction software (2012), available at http://en.wikipedia.org/wiki/List_of_RNA_structure_prediction_software

  43. M. Zuker, P. Stiegler: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information, Nucleic Acids Res. 9, 133–148 (1981)

    Article  Google Scholar 

  44. I.L. Hofacker, W. Fontana, P.F. Stadler, L.S. Bonhoeffer, M. Tacker, P. Schuster: Fast folding and comparison of RNA secondary structures, Monatsh. Chem./Chem. Mon. 125, 167–188 (1994)

    Article  Google Scholar 

  45. S.H. Bernhart, I.L. Hofacker, S. Will, A.R. Gruber, P.F. Stadler: RNAalifold: Improved consensus structure prediction for RNA alignments, BMC Bioinformatics 9, 474 (2008)

    Article  Google Scholar 

  46. M. Hochsmann, B. Voss, R. Giegerich: Pure multiple RNA secondary structure alignments: A progressive profile approach, IEEE/ACM Trans. Comput. Biol. Bioinform. 1, 53–62 (2004)

    Article  Google Scholar 

  47. C.W. Wang, K.T. Chen, C.L. Lu: iPARTS: An improved tool of pairwise alignment of RNA tertiary structures, Nucleic Acids Res. 38, W340–347 (2010)

    Article  Google Scholar 

  48. T.J. Macke, D.J. Ecker, R.R. Gutell, D. Gautheret, D.A. Case, R. Sampath: RNAMotif, an RNA secondary structure definition and search algorithm, Nucleic Acids Res. 29, 4724–4735 (2001)

    Article  Google Scholar 

  49. Z. Yao, Z. Weinberg, W.L. Ruzzo: CMfinder – A covariance model based RNA motif finding algorithm, Bioinformatics 22, 445–452 (2006)

    Article  Google Scholar 

  50. E.P. Nawrocki, D.L. Kolbe, S.R. Eddy: Infernal 1.0: Inference of RNA alignments, Bioinformatics 25, 1335–1337 (2009)

    Article  Google Scholar 

  51. M. Dsouza, N. Larsen, R. Overbeek: Searching for patterns in genomic data, Trends Genet. 13, 497–498 (1997)

    Article  Google Scholar 

  52. T. Barrett, D.B. Troup, S.E. Wilhite, P. Ledoux, C. Evangelista, I.F. Kim, M. Tomashevsky, K.A. Marshall, K.H. Phillippy, P.M. Sherman, R.N. Muertter, M. Holko, O. Ayanbule, A. Yefanov, A. Soboleva: NCBI GEO: Archive for functional genomics data sets – 10 years on, Nucleic Acids Res. 39, D1005–1010 (2010)

    Article  Google Scholar 

  53. M. Hiller, R. Pudimat, A. Busch, R. Backofen: Using RNA secondary structures to guide sequence motif finding towards single-stranded regions, Nucleic Acids Res. 34, e117 (2006)

    Article  Google Scholar 

  54. S. Washietl, I.L. Hofacker, P.F. Stadler: Fast and reliable prediction of noncoding RNAs, Proc. Natl. Acad. Sci. USA 102, 2454–2459 (2005)

    Article  Google Scholar 

  55. O. Elemento, N. Slonim, S. Tavazoie: A universal framework for regulatory element discovery across all genomes and data types, Mol. Cell. 28, 337–350 (2007)

    Article  Google Scholar 

  56. E. Lecuyer, H. Yoshida, N. Parthasarathy, C. Alm, T. Babak, T. Cerovina, T.R. Hughes, P. Tomancak, H.M. Krause: Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function, Cell 131, 174–187 (2007)

    Article  Google Scholar 

  57. P. Landgraf, M. Rusu, R. Sheridan, A. Sewer, N. Iovino, A. Aravin, S. Pfeffer, A. Rice, A.O. Kamphorst, M. Landthaler, C. Lin, N.D. Socci, L. Hermida, V. Fulci, S. Chiaretti, R. Foà, J. Schliwka, U. Fuchs, A. Novosel, R.U. Müller, B. Schermer, U. Bissels, J. Inman, Q. Phan, M. Chien, D.B. Weir, R. Choksi, G. De Vita, D. Frezzetti, H.I. Trompeter, V. Hornung, G. Teng, G. Hartmann, M. Palkovits, R. Di Lauro, P. Wernet, G. Macino, C.E. Rogler, J.W. Nagle, J. Ju, F.N. Papavasiliou, T. Benzing, P. Lichter, W. Tam, M.J. Brownstein, A. Bosio, A. Borkhardt, J.J. Russo, C. Sander, M. Zavolan, T. Tuschl: A mammalian microRNA expression atlas based on small RNA library sequencing, Cell 129, 1401–1414 (2007)

    Article  Google Scholar 

  58. D. Betel, M. Wilson, A. Gabow, D.S. Marks, C. Sander: The microRNA.org resource: Targets and expression, Nucleic Acids Res. 36, D149–153 (2008)

    Article  Google Scholar 

  59. M.A. Batzer, P.L. Deininger: Alu repeats and human genomic diversity, Nat. Rev. Genet. 3, 370–379 (2002)

    Article  Google Scholar 

  60. A. Smit, R. Hubley, P. Green: RepeatMasker Open-3.0. (1996–2010), available at http://www.repeatmasker.org

  61. S. Hannenhalli: Eukaryotic transcription factor binding sites–modeling and integrative search methods, Bioinformatics 24, 1325–1331 (2008)

    Article  Google Scholar 

  62. D. Schmidt, M.D. Wilson, B. Ballester, P.C. Schwalie, G.D. Brown, A. Marshall, C. Kutter, S. Watt, C.P. Martinez-Jimenez, S. Mackay, I. Talianidis, P. Flicek, D.T. Odom: Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding, Science 328, 1036–1040 (2010)

    Article  Google Scholar 

  63. A. Visel, E.M. Rubin, L.A. Pennacchio: Genomic views of distant-acting enhancers, Nature 461, 199–205 (2009)

    Article  Google Scholar 

  64. L.A. Pennacchio, N. Ahituv, A.M. Moses, S. Prabhakar, M.A. Nobrega, M. Shoukry, S. Minovitsky, I. Dubchak, A. Holt, K.D. Lewis, I. Plajzer-Frick, J. Akiyama, S. De Val, V. Afzal, B.L. Black, O. Couronne, M.B. Eisen, A. Visel, E.M. Rubin: In vivo enhancer analysis of human conserved non-coding sequences, Nature 444, 499–502 (2006)

    Article  Google Scholar 

  65. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman: Basic local alignment search tool, J. Mol. Biol. 215, 403–410 (1990)

    Article  Google Scholar 

  66. S.R. Eddy: Profile hidden Markov models, Bioinformatics 14, 755–763 (1998)

    Article  Google Scholar 

  67. J.O. Deshler, M.I. Highett, B.J. Schnapp: Localization of Xenopus Vg1 mRNA by Vera protein and the endoplasmic reticulum, Science 276, 1128–1131 (1997)

    Article  Google Scholar 

  68. D. Gautreau, C.A. Cote, K.L. Mowry: Two copies of a subelement from the Vg1 RNA localization sequence are sufficient to direct vegetal localization in Xenopus oocytes, Development 124, 5013–5020 (1997)

    Google Scholar 

  69. S. Kwon, T. Abramson, T.P. Munro, C.M. John, M. Kohrmann, B.J. Schnapp: UUCAC- and vera-dependent localization of VegT RNA in Xenopus oocytes, Curr. Biol. 12, 558–564 (2002)

    Article  Google Scholar 

  70. S. Choo, B. Heinrich, J.N. Betley, Z. Chen, J.O. Deshler: Evidence for common machinery utilized by the early and late RNA localization pathways in Xenopus oocytes, Dev. Biol. 278, 103–117 (2005)

    Article  Google Scholar 

  71. B.B. Andken, I. Lim, G. Benson, J.J. Vincent, M.T. Ferenc, B. Heinrich, L.A. Jarzylo, H.Y. Man, J.O. Deshler: 3ʼ-UTR SIRF: A database for identifying clusters of short interspersed repeats in 3ʼ untranslated regions, BMC Bioinformatics 8, 274 (2007)

    Article  Google Scholar 

  72. P.P. Tam, I.H. Barrette-Ng, D.M. Simon, M.W. Tam, A.L. Ang, D.G. Muench: The Puf family of RNA-binding proteins in plants: Phylogeny, structural modeling, activity and subcellular localization, BMC Plant Biol. 10, 44 (2010)

    Article  Google Scholar 

  73. I. Tuszynska, J.M. Bujnicki: DARS-RNP and QUASI-RNP: New statistical potentials for protein-RNA docking, BMC Bioinformatics 12, 348 (2011)

    Article  Google Scholar 

  74. M. Kaller, S.T. Liffers, S. Oeljeklaus, K. Kuhlmann, S. Roh, R. Hoffmann, B. Warscheid, H. Hermeking: Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis, Mol. Cell. Proteomics 10(M111), 010462 (2011)

    Google Scholar 

  75. S.D. Hsu, F.M. Lin, W.Y. Wu, C. Liang, W.C. Huang, W.L. Chan, W.T. Tsai, G.Z. Chen, C.J. Lee, C.M. Chiu, C.H. Chien, M.C. Wu, C.Y. Huang, A.P. Tsou, H.D. Huang: miRTarBase: A database curates experimentally validated microRNA-target interactions, Nucleic Acids Res. 39, D163–169 (2011)

    Article  Google Scholar 

  76. M. Thomas, J. Lieberman, A. Lal: Desperately seeking microRNA targets, Nat. Struct. Mol. Biol. 17, 1169–1174 (2010)

    Article  Google Scholar 

  77. F. Xiao, Z. Zuo, G. Cai, S. Kang, X. Gao, T. Li: miRecords: An integrated resource for microRNA-target interactions, Nucleic Acids Res. 37, D105–110 (2009)

    Article  Google Scholar 

  78. H. Dweep, C. Sticht, P. Pandey, N. Gretz: miRWalk-database: Prediction of possible miRNA binding sites by "walking" the genes of three genomes, J. Biomed. Inform. 44, 839–847 (2011)

    Article  Google Scholar 

  79. R.C. Friedman, K.K. Farh, C.B. Burge, D.P. Bartel: Most mammalian mRNAs are conserved targets of microRNAs, Genome Res. 19, 92–105 (2009)

    Article  Google Scholar 

  80. A. Grimson, K.K. Farh, W.K. Johnston, P. Garrett-Engele, L.P. Lim, D.P. Bartel: MicroRNA targeting specificity in mammals: Determinants beyond seed pairing, Mol. Cell. 27, 91–105 (2007)

    Article  Google Scholar 

  81. K. Chen, N. Rajewsky: Natural selection on human microRNA binding sites inferred from SNP data, Nat. Genet. 38, 1452–1456 (2006)

    Article  Google Scholar 

  82. B. John, A.J. Enright, A. Aravin, T. Tuschl, C. Sander, D.S. Marks: Human MicroRNA targets, PLoS Biol. 2, e363 (2004)

    Article  Google Scholar 

  83. D. Betel, A. Koppal, P. Agius, C. Sander, C. Leslie: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites, Genome Biol. 11, R90 (2010)

    Article  Google Scholar 

  84. M.C. Frith, N.F. Saunders, B. Kobe, T.L. Bailey: Discovering sequence motifs with arbitrary insertions and deletions, PLoS Comput. Biol. 4, e1000071 (2008)

    Article  MathSciNet  Google Scholar 

  85. M. Tompa, N. Li, T.L. Bailey, G.M. Church, B. De Moor, E. Eskin, A.V. Favorov, M.C. Frith, Y. Fu, W.J. Kent, V.J. Makeev, A.A. Mironov, W.S. Noble, G. Pavesi, G. Pesole, M. Regnier, N. Simonis, S. Sinha, G. Thijs, J. van Helden, M. Vandenbogaert, Z. Weng, C. Workman, C. Ye, Z. Zhu: Assessing computational tools for the discovery of transcription factor binding sites, Nat. Biotechnol. 23, 137–144 (2005)

    Article  Google Scholar 

  86. E. Westhof, P. Romby: The RNA structurome: High-throughput probing, Nat. Methods 7, 965–967 (2010)

    Article  Google Scholar 

  87. E. Westhof, B. Masquida, F. Jossinet: Predicting and modeling RNA architecture, Cold Spring Harb. Perspect. Biol. 3, a003632 (2011)

    Article  Google Scholar 

  88. F. Jossinet, T.E. Ludwig, E. Westhof: Assemble: An interactive graphical tool to analyze and build RNA architectures at the 2-D and 3-D levels, Bioinformatics 26, 2057–2059 (2010)

    Article  Google Scholar 

  89. M. Parisien, F. Major: The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data, Nature 452, 51–55 (2008)

    Article  Google Scholar 

  90. N.R. Markham, M. Zuker: UNAFold: Software for nucleic acid folding and hybridization, Methods Mol. Biol. 453, 3–31 (2008)

    Article  Google Scholar 

  91. S.J. Lange, D. Maticzka, M. Mohl, J.N. Gagnon, C.M. Brown, R. Backofen: Global or local? Predicting secondary structure and accessibility in mRNAs, Nucleic Acids Res. 40, 5215–5216 (2012)

    Article  Google Scholar 

  92. S.H. Bernhart, U. Muckstein, I.L. Hofacker: RNA accessibility in cubic time, Algorithms Mol. Biol. 6, 3 (2011)

    Article  Google Scholar 

  93. H. Kiryu, G. Terai, O. Imamura, H. Yoneyama, K. Suzuki, K. Asai: A detailed investigation of accessibilities around target sites of siRNAs and miRNAs, Bioinformatics 27, 1788–1797 (2011)

    Article  Google Scholar 

  94. M. Hamada, K. Yamada, K. Sato, M.C. Frith, K. Asai: CentroidHomfold-LAST: Accurate prediction of RNA secondary structure using automatically collected homologous sequences, Nucleic Acids Res. 39, W100–W106 (2011)

    Article  Google Scholar 

  95. J.A. Cruz, E. Westhof: Sequence-based identification of 3-D structural modules in RNA with RMDetect, Nat. Methods 8, 513–519 (2011)

    Article  Google Scholar 

  96. E. Rivas, S.R. Eddy: A dynamic programming algorithm for RNA structure prediction including pseudoknots, J. Mol. Biol. 285, 2053–2068 (1999)

    Article  Google Scholar 

  97. J. Ren, B. Rastegari, A. Condon, H.H. Hoos: HotKnots: Heuristic prediction of RNA secondary structures including pseudoknots, RNA 11, 1494–1504 (2005)

    Article  Google Scholar 

  98. S. Bellaousov, D.H. Mathews: ProbKnot: Fast prediction of RNA secondary structure including pseudoknots, RNA 16, 1870–1880 (2010)

    Article  Google Scholar 

  99. M. Bekaert, A.E. Firth, Y. Zhang, V.N. Gladyshev, J.F. Atkins, P.V. Baranov: Recode-2: New design, new search tools, and many more genes, Nucleic Acids Res. 38, D69–D74 (2010)

    Article  Google Scholar 

  100. P.P. Gardner, R. Giegerich: A comprehensive comparison of comparative RNA structure prediction approaches, BMC Bioinformatics 5, 140 (2004)

    Article  Google Scholar 

  101. C.H. zu Siederdissen, S.H. Bernhart, P.F. Stadler, I.L. Hofacker: A folding algorithm for extended RNA secondary structures, Bioinformatics 27, i129–136 (2011)

    Article  Google Scholar 

  102. A.O. Harmanci, G. Sharma, D.H. Mathews: TurboFold: Iterative probabilistic estimation of secondary structures for multiple RNA sequences, BMC Bioinformatics 12, 108 (2011)

    Article  Google Scholar 

  103. E. Torarinsson, J.H. Havgaard, J. Gorodkin: Multiple structural alignment and clustering of RNA sequences, Bioinformatics 23, 926–932 (2007)

    Article  Google Scholar 

  104. C.M. Reidys, F.W. Huang, J.E. Andersen, R.C. Penner, P.F. Stadler, M.E. Nebel: Topology and prediction of RNA pseudoknots, Bioinformatics 27, 1076–1085 (2011)

    Article  Google Scholar 

  105. A. Taneda: An efficient genetic algorithm for structural RNA pairwise alignment and its application to non-coding RNA discovery in yeast, BMC Bioinformatics 9, 521 (2008)

    Article  Google Scholar 

  106. S. Janssen, R. Giegerich: Faster computation of exact RNA shape probabilities, Bioinformatics 26, 632–639 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stewart G. Stevens or Chris M. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag

About this chapter

Cite this chapter

Stevens, S.G., Brown, C.M. (2014). Bioinformatic Methods to Discover Cis-regulatory Elements in mRNAs. In: Kasabov, N. (eds) Springer Handbook of Bio-/Neuroinformatics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30574-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30574-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30573-3

  • Online ISBN: 978-3-642-30574-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics