Skip to main content

Model Equations for Multi–Agent Networks

  • Chapter
  • 1207 Accesses

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

In the past decades, extensive research has been conducted on the cooperative control of multi–agent systems with possible applications ranging from UAVs and sensor networks over transportation systems to micro–satellite clusters (see, e.g., [19] for a rather recent overview). Thereby, different analysis and design approaches have emerged depending on the available communication topology and the considered formation control task.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L., Horowitz, R., Li, P.: Traffic flow control in automated highway systems. Control Eng. Practice 7, 1071–1078 (1999)

    Article  Google Scholar 

  2. Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Physics Reports 469(3), 93–153 (2008)

    Article  MathSciNet  Google Scholar 

  3. Balch, T., Arkin, R.: Behavior–Based Formation Control for Multirobot Teams. IEEE Trans. Robotics Automat. 14(6), 926–939 (1998)

    Article  Google Scholar 

  4. Barooah, P., Mehta, P., Hespanha, J.: Mistuning–Based Control Design to Improve Closed–Loop Stability Margin of Vehicular Platoons. IEEE Trans. Automat. Control 54(9), 2100–2113 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Applied Mathematics Series. Princeton University Press (2009)

    Google Scholar 

  6. Cybenko, G.: Dynamic Load Balancing for Distributed Memory Multiprocessors. J. Parallel Distr. Com. 7, 279–301 (1989)

    Article  Google Scholar 

  7. Dunbar, W., Murray, R.: Distributed Receding Horizon Control for Multi–Vehicle Formation Stabilization. Automatica 42(4), 549–558 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ferrari-Trecate, G., Buffa, A., Gati, M.: Analysis and Coordination in Multi–Agent Systems Through Partial Difference Equations. IEEE Trans. Automat. Control 51(6), 1058–1063 (2006)

    Article  MathSciNet  Google Scholar 

  9. Frihauf, P., Krstic, M.: Rapidly convergent leader-enabled multi-agent deployment into planar curves. In: Proc. American Control Conference, St. Louis (MO), USA, pp. 1994–1999 (2009)

    Google Scholar 

  10. Frihauf, P., Krstic, M.: Leader–Enabled Deployment Onto Planar Curves: A PDE-Based Approach. IEEE Trans. Automat. Control 56(8), 1791–1806 (2011)

    Article  MathSciNet  Google Scholar 

  11. Helbing, D.: Traffic and related self–driven many-particle systems. Rev. Mod. Phys. 73(4), 1067–1141 (2001)

    Article  Google Scholar 

  12. Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  13. Ji, M., Ferrari-Trecate, G., Egerstedt, M., Buffa, A.: Containment Control in Mobile Networks. IEEE Trans. Autom. Control 53(8), 1972–1975 (2008)

    Article  MathSciNet  Google Scholar 

  14. Kim, J., Kim, K.D., Natarajan, V., Kelly, S., Bentsman, J.: PdE–based model reference adaptive control of uncertain heterogeneous multiagent networks. Nonlinear Analysis: Hybrid Systems 2, 1152–1167 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krstic, M., Smyshlyaev, A.: Boundary Control of PDEs: A Course on Backstepping Designs. SIAM, Philadelphia (2008)

    MATH  Google Scholar 

  16. Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks. Princeton Univeristy Press, Princeton (2010)

    MATH  Google Scholar 

  17. Meurer, T., Krstic, M.: Nonlinear PDE–based motion planning for the formation control of mobile agents. In: Proc (CD–ROM) 8th IFAC Symposium Nonlinear Control Systems (NOLCOS 2010), Bologna (I), pp. 599–604 (2010)

    Google Scholar 

  18. Meurer, T., Krstic, M.: Finite–time multi–agent deployment: A nonlinear PDE motion planning approach. Automatica 47(11), 2534–2542 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Murray, R.: Recent Research in Cooperative Control of Multivehicle Systems. J. Dyn. Meas. Contr. 129, 571–583 (2007)

    Article  Google Scholar 

  20. Olfati-Saber, R.: Flocking for Multi–Agent Dynamic Systems: Algortihms and Theory. IEEE Trans. Automat. Control 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  21. Olfati-Saber, R., Murray, R.: Consensus Problems in Networks of Agents With Switching Topology and Time-Delays. IEEE Trans. Automat. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  22. Ren, W., Beard, R.: Formation feedback control for multiple spacecraft via virtual structures. IEE Proceedings 151(3), 357–368 (2004)

    Google Scholar 

  23. Ren, W., Beard, R.: Distributed Consensus in Multi–vehicle Cooperative Control. Springer, London (2008)

    MATH  Google Scholar 

  24. Sarlette, A., Sepulchre, R.: A PDE viewpoint on basic properties of coordination algorithms with symmetries. In: Proc. IEEE Conference on Decision and Control (CDC), pp. 5139–5144 (2009)

    Google Scholar 

  25. Schwarz, H.: Numerische Mathematik. Teubner-Verlag, Stuttgart (1997)

    Book  MATH  Google Scholar 

  26. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel Type of Phase Transition in a System of Self-Driven Particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)

    Article  Google Scholar 

  27. Zhang, W., Hu, J.: Optimal multi–agent coordination under tree formation constraints. IEEE Trans. Automat. Control 53(3), 692–705 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Meurer .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meurer, T. (2013). Model Equations for Multi–Agent Networks. In: Control of Higher–Dimensional PDEs. Communications and Control Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30015-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30015-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30014-1

  • Online ISBN: 978-3-642-30015-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics