Skip to main content

Collision Avoidance Using Partially Controlled Markov Decision Processes

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 271))

Abstract

Optimal collision avoidance in stochastic environments requires accounting for the likelihood and costs of future sequences of outcomes in response to different sequences of actions. Prior work has investigated formulating the problem as a Markov decision process, discretizing the state space, and solving for the optimal strategy using dynamic programming. Experiments have shown that such an approach can be very effective, but scaling to higher-dimensional problems can be challenging due to the exponential growth of the discrete state space. This paper presents an approach that can greatly reduce the complexity of computing the optimal strategy in problems where only some of the dimensions of the problem are controllable. The approach is applied to aircraft collision avoidance where the system must recommend maneuvers to an imperfect pilot.

This work is sponsored by the Federal Aviation Administration under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R.E.: Adaptive control processes: A guided tour. Princeton University Press (1961)

    Google Scholar 

  2. Bernstein, D.S., Zilberstein, S., Immerman, N.: The complexity of decentralized control of Markov decision processes. In: Conference on Uncertainty in Artificial Intelligence, pp. 32–37. Morgan Kaufmann (2000)

    Google Scholar 

  3. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn., vol. 1. Athena Scientific, Belmont (2005)

    MATH  Google Scholar 

  4. Bilimoria, K.D.: A geometric optimization approach to aircraft conflict resolution. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, Colo. (2000)

    Google Scholar 

  5. Carpenter, B.D., Kuchar, J.K.: Probability-based collision alerting logic for closely-spaced parallel approach. In: AIAA 35th Aerospace Sciences Meeting, Reno, NV (January 1997)

    Google Scholar 

  6. Chamlou, R.: Future airborne collision avoidance—design principles, analysis plan and algorithm development. In: Digital Avionics Systems Conference (2009)

    Google Scholar 

  7. Chryssanthacopoulos, J.P., Kochenderfer, M.J.: Accounting for state uncertainty in collision avoidance. Journal of Guidance, Control, and Dynamics 34(4), 951–960 (2011)

    Article  Google Scholar 

  8. Chryssanthacopoulos, J.P., Kochenderfer, M.J., Williams, R.E.: Improved Monte Carlo sampling for conflict probability estimation. In: AIAA Non-Deterministic Approaches Conference, Orlando, Florida (2010)

    Google Scholar 

  9. Davies, S.: Multidimensional triangulation and interpolation for reinforcement learning. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, pp. 1005–1011. MIT Press, Cambridge (1997)

    Google Scholar 

  10. Dowek, G., Geser, A., Muñoz, C.: Tactical conflict detection and resolution in a 3-D airspace. In: 4th USA/Europe Air Traffic Management R&D Seminar, Santa Fe, New Mexico (2001)

    Google Scholar 

  11. Duong, V.N., Zeghal, K.: Conflict resolution advisory for autonomous airborne separation in low-density airspace. In: IEEE Conference on Decision and Control, December 10-12, vol. 3, pp. 2429–2434 (1997)

    Google Scholar 

  12. Eby, M.S., Kelly, W.E.: Free flight separation assurance using distributed algorithms. In: IEEE Aerospace Conference, March 6-13, vol. 2, pp. 429–441 (1999)

    Google Scholar 

  13. Khatib, O., Maitre, J.F.L.: Dynamic control of manipulators operating in a complex environment. In: Symposium on Theory and Practice of Robots and Manipulators, pp. 267–282. Elsevier, Udine (1978)

    Google Scholar 

  14. Kochenderfer, M.J., Chryssanthacopoulos, J.P.: A decision-theoretic approach to developing robust collision avoidance logic. In: IEEE International Conference on Intelligent Transportation Systems, Madeira Island, Portugal (2010)

    Google Scholar 

  15. Kochenderfer, M.J., Chryssanthacopoulos, J.P., Kaelbling, L.P., Lozano-Perez, T.: Model-based optimization of airborne collision avoidance logic. Project Report ATC-360, Massachusetts Institute of Technology, Lincoln Laboratory (2010)

    Google Scholar 

  16. Kochenderfer, M.J., Edwards, M.W.M., Espindle, L.P., Kuchar, J.K., Griffith, J.D.: Airspace encounter models for estimating collision risk. Journal of Guidance, Control, and Dynamics 33(2), 487–499 (2010)

    Article  Google Scholar 

  17. Kurniawati, H., Hsu, D., Lee, W.: SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces. In: Robotics: Science and Systems (2008)

    Google Scholar 

  18. Kuwata, Y., Fiore, G.A., Teo, J., Frazzoli, E., How, J.P.: Motion planning for urban driving using RRT. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Sepember 22-26, pp. 1681–1686 (2008)

    Google Scholar 

  19. LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning. Tech. Rep. 98-11, Computer Science Department, Iowa State University (October 1998)

    Google Scholar 

  20. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley, Hoboken (2007)

    Book  MATH  Google Scholar 

  21. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley series in probability and mathematical statistics. Wiley, New York (1994)

    Google Scholar 

  22. RTCA: Minimum operational performance standards for Traffic Alert and Collision Avoidance System II (TCAS II), DO-185b. RTCA, Inc., Washington, D.C. (June 2008)

    Google Scholar 

  23. Saunders, J., Beard, R., Byrne, J.: Vision-based reactive multiple obstacle avoidance for micro air vehicles. In: American Control Conference, June 10-12, pp. 5253–5258 (2009)

    Google Scholar 

  24. Smith, T., Simmons, R.G.: Point-based POMDP algorithms: Improved analysis and implementation. In: Uncertainty in Artificial Intelligence (2005)

    Google Scholar 

  25. Temizer, S., Kochenderfer, M.J., Kaelbling, L.P., Lozano-Pérez, T., Kuchar, J.K.: Collision avoidance for unmanned aircraft using Markov decision processes. In: AIAA Guidance, Navigation, and Control Conference, Toronto, Canada (2010)

    Google Scholar 

  26. Yang, L.C., Kuchar, J.K.: Prototype conflict alerting system for free flight. Journal of Guidance, Control, and Dynamics 20(4), 768–773 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kochenderfer, M.J., Chryssanthacopoulos, J.P. (2013). Collision Avoidance Using Partially Controlled Markov Decision Processes. In: Filipe, J., Fred, A. (eds) Agents and Artificial Intelligence. ICAART 2011. Communications in Computer and Information Science, vol 271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29966-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29966-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29965-0

  • Online ISBN: 978-3-642-29966-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics