Skip to main content

Abstract

Constraint-based local search is an important paradigm in the field of constraint programming, particularly when considering very large optimisation problems. We are motivated by applications in areas such as telecommunications network design, warehouse location and other problems in which we wish to select an optimal set of locations from a two dimensional plane. The problems we are interested in are so large that they are ideal candidates for constraint-based local search methods. Maintaining the objective function incrementally is often a key element for efficient local search algorithms. In the case of two dimensional plane problems, we can often achieve incrementality by exploiting computational geometry. In this paper we present a novel approach to solving a class of placement problems for which Voronoi cell computation can provide an efficient form of incrementality. We present empirical results demonstrating the utility of our approach against the current state of the art.

This work is supported by Science Foundation Ireland Grant No. 10/CE/I1853.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Sultan, K.S., Al-Fawzan, M.A.: A tabu search approach to the uncapacitated facility location problem. Annals of Operations Research 86, 91–103 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18, 509–517 (1975)

    Article  MATH  Google Scholar 

  3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry, Algorithms and Applications. Springer (2008)

    Google Scholar 

  4. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 3, 209–226 (1977)

    Article  MATH  Google Scholar 

  5. Gao, L.L., Robinson, E.P.: Uncapacitated facility location: General solution procedures and computational experience. European Journal of Operations Research 76, 410–427 (1994)

    Article  MATH  Google Scholar 

  6. Han, J., Kamber, M., Tung, A.K.H.: Spatial Clustering Methods in Data Mining: A Survey. Taylor and Francis (2001)

    Google Scholar 

  7. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24, 881–892 (2002)

    Article  Google Scholar 

  8. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley Series in Probability and Statistics. Wiley-Interscience (March 2005)

    Google Scholar 

  9. Kratica, J., Tosic, D., Filipovic, V., Ljubic, I., Tolla, P.: Solving the simple plant location problem by genetic algorithm. RAIRO Operations Research 35, 127–142 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mehta, D., O’Sullivan, B., Quesada, L., Ruffini, M., Payne, D., Doyle, L.: Designing resilient long-reach passive optical networks. In: IAAI (2011)

    Google Scholar 

  11. Michel, L., Van Hentenryck, P.: A simple tabu search for warehouse location. European Journal of Operational Research 157(3), 576–591 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mouratidis, K., Papadias, D., Papadimitriou, S.: Tree-based partition querying: a methodology for computing medoids in large spatial datasets. VLDB J. 17(4), 923–945 (2008)

    Article  Google Scholar 

  13. Zhang, Q., Couloigner, I.: A New and Efficient K-Medoid Algorithm for Spatial Clustering. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 181–189. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Shamos, M.I., Hoey, D.: Closest-point problems. In: Proceedings of the 16th Annual Symposium on Foundations of Computer Science, pp. 151–162. IEEE Computer Society, Washington, DC, USA (1975)

    Google Scholar 

  15. Sun, M.: Solving the uncapacitated facility location problem using tabu search. Computers and Operations Research 33(9), 2563–2589 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Whitaker, R.A.: A fast algorithm for the greedy interchange of large-scale clustering and median location problems. INFOR 21, 95–108 (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cambazard, H., Mehta, D., O’Sullivan, B., Quesada, L. (2012). A Computational Geometry-Based Local Search Algorithm for Planar Location Problems. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds) Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation Problems. CPAIOR 2012. Lecture Notes in Computer Science, vol 7298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29828-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29828-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29827-1

  • Online ISBN: 978-3-642-29828-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics