Skip to main content

Time Series Clustering Algorithm for Two-Modes Cyclic Biosignals

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 273))

Abstract

In this study, an automatic algorithm which computes a meanwave is introduced. The meanwave is produced by averaging all cycles of a cyclic signal, sample by sample. With that information, the signal’s morphology is captured and the similarity among its cycles is measured. A k-means clustering procedure is used to distinguish different modes in a cyclic signal, using the distance metric computed with the meanwave information. The algorithm produced is signal-independent, and therefore can be applied to any cyclic signal with no major changes in the fundamental frequency. To test the effectiveness of the proposed method, we’ve acquired several biosignals in context tasks performed by the subjects with two distinct modes in each. The algorithm successfully separates the two modes with 99.3% of efficiency. The fact that this approach doesn’t require any prior information and its preliminary good performance makes it a powerful tool for biosignals analysis and classification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Theis, F., Meyer-Base, A.: Biomedical Signal Analysis: Contemporary Methods and Applications. The MIT Press (2010)

    Google Scholar 

  2. Ben-Arie, J., Wang, Z., Pandit, P., Rajaram, S.: Human Activity Recognition Using Multidimensional Indexing. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(8), 1091–1104 (2002)

    Article  Google Scholar 

  3. Baek, J., Lee, G., Park, W., Yun, B.: Accelerometer Signal Processing for User Activity Detection. Knowledge-Based Intelligent Information & Engineering Systems 3215, 610–617 (2004)

    Article  Google Scholar 

  4. Smith, J., Fishkin, K., Jiang, B., Mamishev, A., Philipose, M., Rea, A., Roy, S., Sundara-Rajan, K.: RFID-Based Techniques for Human-Activity Detection. Communications of the ACM 48(9), 39–44 (2005)

    Article  Google Scholar 

  5. Fridlund, A., Schwartz, G., Fowler, S.: Pattern Recognition of Self-Reported Emotional State from Multiple-Site Facial EMG Activity During Affective Imagery. Society for Psychophysiological Research 21(6), 622–637 (2007)

    Google Scholar 

  6. Basseville, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Applications. Prentice-Hall Inc. (1993)

    Google Scholar 

  7. Ghahramani, Z.: Unsupervised learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) Machine Learning 2003. LNCS (LNAI), vol. 3176, pp. 72–112. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Wu, X., Kumar, V., Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G., Ng, A., Liu, B., Yu, P., Zhou, Z., Steinbach, M., Hand, D., Steinberg, D.: Top 10 algorithms in data mining. Knowledge Information Systems 14(1), 1–37 (2007)

    Article  Google Scholar 

  9. Liao, W.: Clustering of time series data – a survey. Pattern Recognition 38, 1857–1874 (2005)

    Article  MATH  Google Scholar 

  10. Quiroga, R.: Spike sorting. Scholarpedia 2(12), 3583 (2007)

    Article  Google Scholar 

  11. PLUX – Wireless Biosignals, bioPLUX Research Manual - internal report (2010)

    Google Scholar 

  12. Andersson, E., Supej, M., Sandbakk, Ø., Sperlich, B., Stöggl, T., Holmberg, H.: Analysis of sprint cross-country skiing using a differential global navigation satellite system. European Journal of Applied Physiology 110(3), 585–595 (2010)

    Article  Google Scholar 

  13. Myklebust, H., Nunes, N., Hallén, J., Gamboa, H.: Morphological analysis of acceleration signals in cross-country skiing - information extraction and technique transitions detection. In: Procedings of the 4th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2011), Rome, Italy (2011)

    Google Scholar 

  14. OpenSignals, http://www.opensignals.net

  15. Oliphant, T.: Guide to Numpy. Tregol Publishing (2006)

    Google Scholar 

  16. Oliphant, T.: SciPy Tutorial, http://www.scipy.org/

  17. Martins, D., Mattos, M., Simões, P., Cechinel, C., Bettiol, J., Barbosa, A.: Aplicação do Algoritmo K-Means em Dados de Prevalência da Asma e Rinite em Escolares. In: XI Congresso Brasileiro de Informática em Saúde (2008)

    Google Scholar 

  18. Gerhard, D.: Pitch extraction and fundamental frequency: History and current techniques. Technical Report (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nunes, N., Araújo, T., Gamboa, H. (2013). Time Series Clustering Algorithm for Two-Modes Cyclic Biosignals. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2011. Communications in Computer and Information Science, vol 273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29752-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29752-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29751-9

  • Online ISBN: 978-3-642-29752-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics