Skip to main content

Application of Non-invasive Microelectrode Flux Measurements in Plant Stress Physiology

  • Chapter
  • First Online:

Abstract

Non-invasive microelectrode flux measurement (the MIFE™ technique) is a convenient tool to study membrane-transport processes in plants in situ. Over the last 20 years, many papers have been published elucidating the critical role of membrane-transport processes in response to a variety of abiotic and biotic stresses including salinity, osmotic stress, temperature extremes, acidity, oxygen deprivation, nutritional disorders, oxidative stress, and pathogens and elicitors. In this review, we summarize some of these findings and illustrate how the application of ion-selective microelectrodes may be combined with other techniques to address some fundamental issues related to mechanisms of plant nutrient acquisition and stress signaling and adaptation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

abi1 :

Abscisic acid-insensitive1

akt1 :

Arabidopsis K+ transporter1

ALMT:

Aluminum-activated malate transporter

AM:

Arbuscular mycorrhiza

AtCNGC10:

Arabidopsis cyclic nucleotide-gated channel10

AtHELPS :

Arabidopsis DExD/H box RNA helicase

ATP:

Adenosine triposphate

CED-9:

Cell death defective-9

Cu/a:

Cu2+/ascorbate

[Ca2+]cyt :

Cytosolic free calcium

Em:

Membrane potential

GORK:

Guard cell outward-rectifying K+ channel

HR:

Hypersensitive response

Kcv:

Viral-encoded K+ channel

KIR:

K+ inward-rectifying channel

KOR:

K+ outward-rectifying channel

LIX:

Liquid ion exchanger

MATE:

Multidrug and toxic efflux transporter

MBS:

Marine bioactive substances

NORC:

Nonspecific outward-rectifying channel

NSCC:

Non-selective cation channel

O2 :

Oxygen

PAMPs:

Pathogen-associated molecular patterns

PA:

Polyamines

PBCV-1:

Paramecium bursaria chlorella virus

PCD:

Programmed cell death

PM:

Plasma membrane

PMV:

Papaya mosaic virus

PVX:

Potato virus X

ROS:

Reactive oxygen species

SAC:

Stretch-activated channels

SIET:

Scanning ion-selective electrode technique

TEA:

Tetraethylammonium

TUNEL:

Terminal deoxynucleotidyl dUTP nick end labeling

ucu2-2/gi2:

ultracurvata2-2/gigantea-2

UV-C:

Ultraviolet-C

zVAD-fmk:

Benzyloxycarbonyl-Val-Ala-Asp (OMe)—uoromethylketone

References

  • Akeson MA, Munns DN, Burau RG (1989) Adsorption of Al3+ to phosphatidylcholine vesicles. Biochim Biophys Acta 986:33–40

    Article  PubMed  CAS  Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell, 3rd edn. Garland Publishing Inc, New York

    Google Scholar 

  • Atkinson MM, Keppler LD, Orlandi EW, Baker CJ, Mischke CF (1990) Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ and hypersensitive responses in tobacco. Plant Physiol 92:215–221

    Article  PubMed  CAS  Google Scholar 

  • Ayala F, Oleary JW, Schumaker KS (1996) Increased vacuolar and plasma membrane H+-ATPase activities in Salicornia bigelovii Torr in response to NaCl. J Exp Bot 47:25–32

    Article  CAS  Google Scholar 

  • Babourina O, Hawkins B, Lew RR, Newman I, Shabala S (2001) K+ transport by Arabidopsis root hairs at low pH. Austral J Plant Physiol 28:635–641

    CAS  Google Scholar 

  • Bajaj S, Targolli J, Liu LF, Ho THD, Wu R (1999) Transgenic approaches to increase dehydration-stress tolerance in plants. Mol Breeding 5:493–503

    Article  CAS  Google Scholar 

  • Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signalling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15: 365–379

    Google Scholar 

  • Basu R, Ghosh B (1991) Polyamines in various rice (Oryza sativa) genotypes with respect to sodium-chloride salinity. Physiol Plant 82:575–581

    Article  CAS  Google Scholar 

  • Beffagna N, Buffoli B, Busi C (2005) Modulation of reactive oxygen species production during osmotic stress in Arabidopsis thaliana cultured cells: Involvement of the plasma membrane Ca2+-ATPase and H+-ATPase. Plant Cell Physiol 46:1326–1339

    Article  PubMed  CAS  Google Scholar 

  • Bisson MA, Kiegle E, Black D, Kiyosawa K, Gerber N (1995) The role of calcium in turgor regulation in Chara longifolia. Plant Cell Environ 18:129–137

    Article  CAS  Google Scholar 

  • Blume B, Nürnberger T, Nass N, Scheel D (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12:1425–1440

    Google Scholar 

  • Blumwald E, Aharon GS, Lam C-H (1998) Early signal transduction pathways in plant-pathogen interactions. Trends Plant Sci 3:342–346

    Article  Google Scholar 

  • Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci Hort 78:237–260

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptation to environmental stresses. Plant Cell 7:1099–1111

    Article  PubMed  CAS  Google Scholar 

  • Bose J, Babourina O, Shabala S, Rengel Z (2010a) Aluminium-induced ion transport in Arabidopsis: the relationship between Al tolerance and root ion flux. J Exp Bot 61:3163–3175

    Article  PubMed  CAS  Google Scholar 

  • Bose J, Babourina O, Shabala S, Rengel Z (2010b) Aluminum-dependent dynamics of ion transport in Arabidopsis: specificity of low pH and aluminum responses. Physiol Plant 139:401–412

    PubMed  CAS  Google Scholar 

  • Bose J, Babourina O, Rengel Z (2011a) Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot 62:2251–2264

    Article  PubMed  CAS  Google Scholar 

  • Bose J, Pottosin II, Shabala SS, Palmgren MG, Shabala S (2011b) Calcium efflux systems in stress signalling and adaptation in plants. Front. Plant Sci. 2:85. doi: 10.3389/fpls.2011.00085

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Brady DJ, Edwards DG, Asher CJ, Blamey FPC (1993) Calcium amelioration of aluminum toxicity effects on root hair development in soybean [Glycine max (L) Merr]. New Phytol 123:531–538

    Article  CAS  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trend Plant Sci 2:48–54

    Article  Google Scholar 

  • Brownlee C, Goddard H, Hetherington AM, Peake L-A (1999) Specificity and integration of responses: Ca2+ as a signal in polarity and osmotic regulation. J Exp Bot 50:1001–1011

    CAS  Google Scholar 

  • Bruggemann W, Janiesch P (1989) Comparison of plasma membrane ATPase from salt-treated and salt-free grown Plantago maritima L. J Plant Physiol 134:20–25

    Article  Google Scholar 

  • Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131:676–683

    Article  PubMed  CAS  Google Scholar 

  • Casolo V, Petrussa E, Krajnakova J, Macri F, Vianello A (2005) Involvement of the mitochondrial K+-ATP channel in H2O2- or NO-induced programmed death of soybean suspension cell cultures. J Exp Bot 56:997–1006

    Article  PubMed  CAS  Google Scholar 

  • Cervantes E (2001) ROS in root gravitropism: the auxin messengers? Trends Plant Sci 6:556

    Article  CAS  Google Scholar 

  • Cessna SG, Kim J, Taylor ATS (2003) Cytosolic Ca2+ pulses and protein kinase activation in the signal transduction pathways leading to the plant oxidative burst. J Plant Biol 46:215–222

    Article  CAS  Google Scholar 

  • Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant, Cell Environ 28:1230–1246

    Article  CAS  Google Scholar 

  • Chen ZH, Cuin TA, Zhou MX, Twomey A, Naidu BP, Shabala S (2007a) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255

    Article  PubMed  CAS  Google Scholar 

  • Chen ZH, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou MX, Palmgren MG, Newman IA, Shabala S (2007b) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725

    Article  PubMed  CAS  Google Scholar 

  • Chen ZG, Shabala S, Mendham N, Newman I, Zhang GP, Zhou MX (2008) Combining ability of salinity tolerance on the basis of NaCl-induced K+ flux from roots of barley. Crop Sci 48:1382–1388

    Article  CAS  Google Scholar 

  • Chichkova NV, Kim SH, Titova ES, Kalkum M, Morozov VS, Rubtsov YP, Kalinina NO, Taliansky ME, Vartapetian AB (2004) A plant caspase-like protease activated during the hypersensitive response. Plant Cell 16:157–171

    Article  PubMed  CAS  Google Scholar 

  • Chung WS, Lee SH, Kim JC, Heo WD, Kim MC, Park CY, Park HC, Lim CO, Kim WB, Harper JF, Cho MJ (2000) Identification of a calmodulin-regulated soybean Ca2+-ATPase (SCA1) that is located in the plasma membrane. Plant Cell 12:1393–1407

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK, Bent AF (2000) The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA 97: 9323–9328

    Google Scholar 

  • Colmer TD, Greenway H (2011) Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J Exp Bot 62:39–57

    Article  PubMed  CAS  Google Scholar 

  • Colmer TD, Huang SB, Greenway H (2001) Evidence for down-regulation of ethanolic fermentation and K+ effluxes in the coleoptile of rice seedlings during prolonged anoxia. J Exp Bot 52:1507–1517

    Article  PubMed  CAS  Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186:143–153

    Article  PubMed  CAS  Google Scholar 

  • Cramer GR, Lynch J, Lauchli A, Epstein E (1987) Influx of Na+, K+, and Ca2+ into roots of salt-stressed cotton seedlings. Effects of supplemental Ca2+. Plant Physiol 83:510–516

    Article  PubMed  CAS  Google Scholar 

  • Cuin TA, Shabala S (2005) Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant Cell Physiol 46:1924–1933

    Article  PubMed  CAS  Google Scholar 

  • Cuin TA, Shabala S (2007a) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225:753–761

    Article  PubMed  CAS  Google Scholar 

  • Cuin TA, Shabala S (2007b) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30:875–885

    Article  PubMed  CAS  Google Scholar 

  • Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54:657–661

    Article  PubMed  CAS  Google Scholar 

  • Cuin TA, Parsons D, Shabala S (2010) Wheat cultivars can be screened for NaCl salinity tolerance by measuring leaf chlorophyll content and shoot sap potassium. Funct Plant Biol 37:656–664

    Article  CAS  Google Scholar 

  • Cuin TA, Bose J, Stefano G, Jha D, Tester M, Mancuso S, Shabala S (2011a) Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant, Cell Environ 34:947–961

    Article  CAS  Google Scholar 

  • Cuin TA, Zhou MZ, Parsons D, Shabala S (2011b) Genetic behaviour of physiological traits conferring cytosolic K+/Na+ homeostasis in wheat. Plant Biol doi: 10.1111/j.1438-8677.2011.00526.x

  • Degenhardt J, Larsen PB, Howell SH, Kochian LV (1998) Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an Aluminum-induced increase in rhizosphere pH. Plant Physiol 117:19–27

    Article  PubMed  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128:379–387

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+ and K+- permeable channels in plant root cells. J Cell Sci 116:81–88

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Shabala SN, Davies JM (2007) Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant J 49:377–386

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479

    Article  PubMed  CAS  Google Scholar 

  • Ding X et al. (2011) Synergistic interactions between Glomus mosseae and Bradyrhizobium japonicum in enhancing proton release from nodules and hyphae. Mycorrhiza:1–8 (DOI:10.1007/s00572-00011-00381-00573)

  • Ding JP, Badot PM, Pickard BG (1993) Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel. Aust J Plant Physiol 20:771–778

    Article  PubMed  CAS  Google Scholar 

  • Elkahoui S, Carvajal M, Ghrir R, Limam F (2005) Study of the involvement of osmotic adjustment and H+-ATPase activity in the resistance of Catharanthus roseus suspension cells to salt stress. Plant Cell Tiss Org 80:287–294

    Article  CAS  Google Scholar 

  • Erdei L, Trivedi S, Takeda K, Matsumoto H (1990) Effects of osmotic and salt stresses on the accumulation of polyamines in leaf segments from wheat-varieties differing in salt and drought tolerance. J Plant Physiol 137:165–168

    Article  CAS  Google Scholar 

  • Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol 40:235–269

    Article  CAS  Google Scholar 

  • Felle H (2001) pH: signal and messenger in plant cells. Plant biology 3:577–591

    Article  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: Where next? Austral J Plant Physiol 22:875–884

    Article  Google Scholar 

  • Foy CD (1988) Plant adaptation to acid, aluminum-toxic soils. Commun Soil Sci Plant Anal 19:959–987

    Article  CAS  Google Scholar 

  • Galston AW, Kaur-Sawhney R (1990) Polyamines in plant physiology. Plant Physiol 94:406–410

    Article  PubMed  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    Article  PubMed  CAS  Google Scholar 

  • Garufi A, Visconti S, Camoni L, Aducci P (2007) Polyamines as physiological regulators of 14-3-3 interaction with the plant plasma membrane H+-ATPase. Plant Cell Physiol 48:434–440

    Article  PubMed  CAS  Google Scholar 

  • Gout E, Boisson AM, Aubert S, Douce R, Bligny R (2001) Origin of the cytoplasmic pH changes during anaerobic stress in higher plant cells. Carbon-13 and phosphorous-31 nuclear magnetic resonance studies. Plant Physiol 125:912–925

    Article  PubMed  CAS  Google Scholar 

  • Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J (2000) The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J 23:441–450

    Google Scholar 

  • Greenway H, Gibbs J (2003) Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct Plant Biol 30:999–1036

    Article  CAS  Google Scholar 

  • Greenway H, Waters I, Newsome J (1992) Effects of anoxia on uptake and loss of solutes in roots of wheat. Aust J Plant Physiol 19:233–247

    Article  CAS  Google Scholar 

  • Gulbins E, Jekle A, Ferlinz K, Grassme H, Lang F (2000) Physiology of apoptosis. Amer J Physiol Renal Physiol 279: F605–F615

    Google Scholar 

  • Guo KM, Babourina O, Christopher DA, Borsic T, Rengel Z (2010) The cyclic nucleotide gated channel AtCNGC10 transports Ca2+ and Mg2+ in Arabidopsis. Physiol Plant 139:303–312

    PubMed  CAS  Google Scholar 

  • Halliwell B, Grootveld M (1988) Methods for the measurement of hydroxyl radicals in biochemical systems–deoxyribose degradation and aromatic hydroxylation. Methods Biochem Analisis 33:59–90

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, van Staden J (2002) Disruptive effects of exogenous proline on chloroplast and mitochondrial ultrastructure in Arabidopsis leaves. South African J Bot 68:393–396

    CAS  Google Scholar 

  • Hariadi Y, Shabala S (2004) Screening broad beans (Vicia faba) for magnesium deficiency. II. Photosynthetic performance and leaf bioelectrical responses. Funct Plant Biol 31:539–549

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855–858

    Article  PubMed  CAS  Google Scholar 

  • Hawkins BJ, Robbins S (2010) pH affects ammonium, nitrate and proton fluxes in the apical region of conifer and soybean roots. Physiol Plant 138:238–247

    Article  PubMed  CAS  Google Scholar 

  • Hawkins B, Boukcim H, Plassard C (2008) A comparison of ammonium, nitrate and proton net fluxes along seedling roots of Douglas fir and lodgepole pine grown and measured with different inorganic nitrogen sources. Plant Cell Environ 31:278–287

    Article  PubMed  CAS  Google Scholar 

  • Heber U, Tyankova L, Santarius KA (1971) Stabilization and inactivation of biological membranes during freezing in presence of amino acids. Biochim Biophys Acta 241:578–592

    Article  PubMed  CAS  Google Scholar 

  • Henle ES, Linn S (1997) Formation, prevention, and repair of DNA damage by iron hydrogen peroxide. J Biol Chem 272:19095–19098

    Article  PubMed  CAS  Google Scholar 

  • Hirschi K (2001) Vacuolar H+/Ca2+ transport: who’s directing the traffic? Trend Plant Sci 6:100–104

    Article  CAS  Google Scholar 

  • Hoeberichts FA, Woltering EJ (2003) Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators. BioEssays 25:47–57

    Article  PubMed  CAS  Google Scholar 

  • Hoekenga OA et al (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743

    Article  PubMed  CAS  Google Scholar 

  • Hong ZL, Lakkineni K, Zhang ZM, Verma DPS (2000) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Huang JW, Shaff JE, Grunes DL, Kochian LV (1992) Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars. Plant Physiol 98:230–237

    Article  PubMed  CAS  Google Scholar 

  • Huang JW, Pellet DM, Papernik LA, Kochian LV (1996) Aluminum interactions with voltage-dependent calcium transport in plasma membrane vesicles isolated from roots of aluminum-sensitive and-resistant wheat cultivars. Plant Physiol 110:561–569

    Article  PubMed  CAS  Google Scholar 

  • Huh GH, Damsz B, Matsumoto TK, Reddy MP, Rus AM, Ibeas JI, Narasimhan ML, Bressan RA, Hasegawa PM (2002) Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. Plant J 29:649–659

    Article  PubMed  CAS  Google Scholar 

  • Igarashi Y, Yoshiba Y, Sanada Y, YamaguchiShinozaki K, Wada K, Shinozaki K (1997) Characterization of the gene for Δ1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol Biol 33:857–865

    Article  PubMed  CAS  Google Scholar 

  • Ikka T et al (2007) Natural variation of Arabidopsis thaliana reveals that aluminum resistance and proton resistance are controlled by different genetic factors. Theor Appl Genet 115:709–719

    Article  PubMed  CAS  Google Scholar 

  • Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and O -2 from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci USA 94:4800–4805

    Article  PubMed  CAS  Google Scholar 

  • Jones DL, Shaff JE, Kochian LV (1995) Role of calcium and other ions in directing root hair tip growth in Limnobium stoloniferum. Planta 197:672–680

    Article  CAS  Google Scholar 

  • Kadota Y, Goh T, Tomatsu H, Tamauchi R, Higashi K, Muto S, Kuchitsu K (2004) Cryptogein-induced initial events in tobacco BY-2 cells: Pharmacological characterization of molecular relationship among cytosolic Ca2+ transients, anion efflux and production of reactive oxygen species. Plant Cell Physiol 45:160–170

    Article  PubMed  CAS  Google Scholar 

  • Katsuhara M, Kawasaki T (1996) Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots. Plant Cell Physiol 37:169–173

    Article  CAS  Google Scholar 

  • Keltjens WG, Tan K (1993) Interactions between aluminium, magnesium and calcium with different monocotyledonous and dicotyledonous plant species. Plant Soil 155–156:485–488

    Article  Google Scholar 

  • Kidd PS, Proctor J (2001) Why plants grow poorly on very acid soils: are ecologists missing the obvious? J Exp Bot 52:791–799

    Article  PubMed  CAS  Google Scholar 

  • Kiegle E, Gilliham M, Haseloff J, Tester M (2000) Hyperpolarisation-activated calcium currents found only in cells from the elongation zone of Arabidopsis thaliana roots. Plant J 21:225–229

    Article  PubMed  CAS  Google Scholar 

  • Kinraide TB (1993) Aluminum enhancement of plant growth in acid rooting media–a case of reciprocal alleviation of toxicity by 2 toxic cations. Physiol Plant 88:619–625

    Article  CAS  Google Scholar 

  • Kinraide TB, Wyse RE (1986) Electrical evidence for turgor inhibition of proton extrusion in sugar beet taproot. Plant Physiol 82:1148–1150

    Article  PubMed  CAS  Google Scholar 

  • Kinraide TB, Pedler JF, Parker DR (2004) Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant Soil 259:201–208

    Article  CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Kochian LV, Shaff JE, Lucas WJ (1989) High affinity K+ uptake in maize roots. A lack of coupling with H+ efflux. Plant Physiol 91:1202–1211

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    Article  CAS  Google Scholar 

  • Kohler B, Hills A, Blatt MR (2003) Control of guard cell ion channels by hydrogen peroxide and abscisic acid indicates their action through alternate signalling pathways. Plant Physiol 131:385–388

    Article  PubMed  CAS  Google Scholar 

  • Koizumi Y, Hara Y, Yazaki Y, Sakano K, Ishizawa K (2011) Involvement of plasma membrane H+ ATPase in anoxic elongation of stems in pondweed (Potamogeton distinctus) turions. New Phytol 190:421–430

    Article  PubMed  CAS  Google Scholar 

  • Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Amer J Physiol 44:1–24

    Google Scholar 

  • Koyama H, Toda T, Yokota S, Dawair Z, Hara T (1995) Effects of aluminum and pH on root growth and cell viability in Arabidopsis thaliana strain Landsberg in hydroponic culture. Plant Cell Physiol 36:201–205

    CAS  Google Scholar 

  • Koyama H, Toda T, Hara T (2001) Brief exposure to low-pH stress causes irreversible damage to the growing root in Arabidopsis thaliana: pectin-Ca interaction may play an important role in proton rhizotoxicity. J Exp Bot 52:361–368

    Article  PubMed  CAS  Google Scholar 

  • LaHaye PA, Epstein E (1969) Salt tolerance in plants: enhancement with calcium. Science 166:395–396

    Article  PubMed  CAS  Google Scholar 

  • Lakra N, Mishra SN, Singh DB, Tomar PC (2006) Exogenous putrescine effect on cation concentration in leaf of Brassica juncea seedlings subjected to Cd and Pb along with salinity stress. J Env Biol 27:263–269

    CAS  Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853

    Article  PubMed  CAS  Google Scholar 

  • Larsen PB, Degenhardt J, Tai C-Y, Stenzler LM, Howell SH, Kochian LV (1998) Aluminum-resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol 117:9–17

    Article  PubMed  CAS  Google Scholar 

  • Lecourieux D, Mazars C, Pauly N, Ranjeva R, Pugin A (2002) Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell 14:2627–2641

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Pritchard M (1984) Aluminium toxicity expression nutrient uptake, growth and root morphology of Trifolium repens L. cv. ‘Grasslands Huia’. Plant Soil 82:101–116

    Article  CAS  Google Scholar 

  • Lee SH, Singh AP, Chung GC (2004) Rapid accumulation of hydrogen peroxide in cucumber roots due to exposure to low temperature appears to mediate decreases in water transport. J Exp Bot 55:1733–1741

    Article  PubMed  CAS  Google Scholar 

  • Leigh RA (2001) Potassium homeostasis and membrane transport. J Plant Nutrit Soil Sci 164:193–198

    Article  CAS  Google Scholar 

  • Lew RR (1996) Pressure regulation of the electrical properties of growing Arabidopsis thaliana L root hairs. Plant Physiol 112:1089–1100

    Article  PubMed  CAS  Google Scholar 

  • Lew RR, Levina NN, Shabala L, Anderca MI, Shabala SN (2006) Role of a mitogen-activated protein kinase cascade in ion flux-mediated turgor regulation in fungi. Eukaryot Cell 5:480–487

    Article  PubMed  CAS  Google Scholar 

  • Li Z-S, Delrot S (1987) Osmotic dependence of the transmembrane potential difference of broad bean mesocarp cells. Plant Physiol 84:895–899

    Article  PubMed  CAS  Google Scholar 

  • Lindberg S (1990) Aluminium interactions with K+ (86Rb+) and 45Ca2+ fluxes in three cultivars of sugar beet (Beta vulgaris). Physiol Plant 79:275–282

    Article  CAS  Google Scholar 

  • Liu J, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Kochian LV (1986) Ion transport processes in corn roots: an approach utilizing microelectrode techniques. In: Gensler WG (ed) Advanced agricultural instrumentation: design and use. Martinus Nijhoff, Dordrecht, pp 402–425

    Google Scholar 

  • Lutts S, Majerus V, Kinet JM (1999) NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol Plant 105:450–458

    Article  CAS  Google Scholar 

  • Mancuso S, Boselli M (2002) Characterisation of the oxygen fluxes in the division, elongation and mature zones of Vitis roots: influence of oxygen availability. Planta 214:767–774

    Article  PubMed  CAS  Google Scholar 

  • Mancuso S, Marras AM (2006) Adaptative response of Vitis root to anoxia. Plant Cell Physiol 47:401–409

    Article  PubMed  CAS  Google Scholar 

  • Mancuso S, Azzarello E, Mugnai S, Briand X (2006) Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Adv Hortic Sci 20:156–161

    Google Scholar 

  • Matsumoto H, Yamaya T (1986) Inhibition of potassium uptake and regulation of membrane-associated Mg2+ -ATPase activity of pea roots by aluminum. Soil Sci Plant Nutr 32:179–188

    CAS  Google Scholar 

  • McCue KF, Hanson AD (1990) Drought and salt tolerance–towards understanding and application. Trends Biotechnol 8:358–362

    Article  CAS  Google Scholar 

  • Michelet B, Boutry M (1995) The plasma membrane H+-ATPase: a highly regulated enzyme with multiple physiological functions. Plant Physiol 108:1–6

    PubMed  CAS  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. A signalling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol 135:702–708

    Article  PubMed  CAS  Google Scholar 

  • Mugnai S, Azzarello E, Pandolfi C, Salamagne S, Briand X, Mancuso S (2008) Enhancement of ammonium and potassium root influxes by the application of marine bioactive substances positively affects Vitis vinifera plant growth. J Appl Phycol 20:177–182

    Article  CAS  Google Scholar 

  • Mugnai S, Marras AM, Mancuso S (2011) Effect of hypoxic acclimation on anoxia tolerance in Vitis roots: Response of metabolic activity and K+ fluxes. Plant Cell Physiol 52:1107–1116

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Nash D, Paleg LG, Wiskich JT (1982) Effect of proline, betaine and some other solutes on the heat stability of mitochondrial enzymes. Aust J Plant Physiol 9:47–57

    Article  CAS  Google Scholar 

  • Ndayiragije A, Lutts S (2006) Exogenous putrescine reduces sodium and chloride accumulation in NaCl-treated calli of the salt-sensitive rice cultivar I Kong Pao. Plant Growth Reg 48:51–63

    Article  CAS  Google Scholar 

  • Nemchinov LG, Shabala L, Shabala S (2008) Calcium efflux as a component of the hypersensitive response of Nicotiana benthamiana to Pseudomonas syringae. Plant Cell Physiol 49:40–46

    Article  PubMed  CAS  Google Scholar 

  • Neupartl M, Meyer C, Woll I, Frohns F, Kang M, Van Etten JL, Kramer D, Hertel B, Moroni A, Thiel G (2008) Chlorella viruses evoke a rapid release of K+ from host cells during the early phase of infection. Virology 372:340–348

    Article  PubMed  CAS  Google Scholar 

  • Newman IA, Kochian LV, Grusak MA, Lucas WJ (1987) Fluxes of H+ and K+ in corn roots—characterization and stoichiometries using ion selective microelectrodes. Plant Physiol 84:1177–1184

    Article  PubMed  CAS  Google Scholar 

  • Newman I, Chen SL, Porterfield DM, Sun J (2012) Non-invasive flux measurements using microsensors: theory, limitations and systems. In: Shabala S, Cuin TA (eds) Methods in molecular biology–plant salt tolerance. Humana Press, Clifton (in press)

    Google Scholar 

  • Nichol BE, Oliveira LA, Glass ADM, Siddiqi MY (1993) The effects of aluminum on the influx of calcium, potassium, ammonium, nitrate, and phosphate in an aluminum-sensitive cultivar of barley (Hordeum vulgare L.). Plant Physiol 101:1263–1266

    PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Nurnberger T, Nennsteil D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defence responses. Cell 78:449–460

    Article  PubMed  CAS  Google Scholar 

  • Okazaki Y, Tazawa M (1990) Calcium ion and turgor regulation in plant cells. J Membrane Biol 114:189–194

    Article  CAS  Google Scholar 

  • Okazaki Y, Shimmen T, Tazawa M (1984) Turgor regulation in a brackish Charophyte, Lamprothamnium succinctum. II. Changes in K+, Na+ and Cl- concentrations, membrane potential and membrane resistance during turgor regulation. Plant Cell Physiol 25:573–581

    CAS  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    PubMed  CAS  Google Scholar 

  • Palmgren MG (1991) Regulation of plasma membrane H+-ATPase activity. Physiol Plant 83:314–323

    Article  CAS  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Biol 52:817–845

    Google Scholar 

  • Panayiotidis MI, Bortner CD, Cidlowski JA (2006) On the mechanism of ionic regulation of apoptosis: would the Na+/K+-ATPase please stand up? Acta Physiol 187:205–215

    Article  CAS  Google Scholar 

  • Pandolfi C, Pottosin I, Cuin T, Mancuso S, Shabala S (2010) Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants. Plant Cell Physiol 51:422–434

    Google Scholar 

  • Pang JY, Newman I, Mendham N, Zhou M, Shabala S (2006) Microelectrode ion and O2 fluxes measurements reveal differential sensitivity of barley root tissues to hypoxia. Plant Cell Environ 29:1107–1121

    Article  PubMed  CAS  Google Scholar 

  • Pang JY, Cuin T, Shabala L, Zhou MX, Mendham N, Shabala S (2007) Effect of secondary metabolites associated with anaerobic soil conditions on ion fluxes and electrophysiology in barley roots. Plant Physiol 145:266–276

    Article  PubMed  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  • Peng Z, Lu Q, Verma DPS (1996) Reciprocal regulation of Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol Gen Genetics 253:334–341

    CAS  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157–1168

    Article  PubMed  CAS  Google Scholar 

  • Pickard BG, Ding JP (1993) The mechanosensory calcium-selective ion channel: key component of a plasmalemma control centre? Austral J Plant Physiol 20:439–459

    Article  CAS  Google Scholar 

  • Pineros MA, Kochian LV (2001) A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of Al3+-induced anion channels. Plant Physiol 125:292–305

    Article  PubMed  CAS  Google Scholar 

  • Pineros M, Tester M (1997) Calcium channels in higher plant cells: Selectivity, regulation and pharmacology. J Exp Bot 48:551–577

    Article  PubMed  CAS  Google Scholar 

  • Qiao WH, Fan LM (2008) Nitric oxide signaling in plant responses to abiotic stresses. J Integrat Plant Biol 50:1238–1246

    Article  CAS  Google Scholar 

  • Ramahaleo T, Alexandre J, Lassalles J-P (1996) Stretch activated channels in plant cells. A new model for osmoelastic coupling. Plant Physiol Biochem 34:327–334

    Google Scholar 

  • Ramani B, Reeck T, Debez A, Stelzer R, Huchzermeyer B, Schmidt A, Papenbrock J (2006) Aster tripolium L. and Sesuvium portulacastrum L.: two halophytes, two strategies to survive in saline habitats. Plant Physiol Biochem 44:395–408

    Article  PubMed  CAS  Google Scholar 

  • Ramos AC, Façanha AR, Feijó JA (2008) Proton (H+) flux signature for the presymbiotic development of the arbuscular mycorrhizal fungi. New Phytol 178:177–188

    Article  PubMed  CAS  Google Scholar 

  • Ramos AC, Lima PT, Dias PN, Kasuya MCM, Feijó JA (2009) A pH signaling mechanism involved in the spatial distribution of calcium and anion fluxes in ectomycorrhizal roots. New Phytol 181:448–462

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe RG (1997) In vivo NMR studies of the metabolic response of plant tissues to anoxia. Ann Bot 79:39–48

    Article  CAS  Google Scholar 

  • Rawyler A, Pavelic D, Gianinazzi C, Oberson J, Braendle R (1999) Membrane lipid integrity relies on a threshold of ATP production rate in potato cell cultures submitted to anoxia. Plant Physiol 120:293–300

    Google Scholar 

  • Raven JA (1985) Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol 101:25–77

    Article  CAS  Google Scholar 

  • Reid RJ, Smith FA (2000) The limits of sodium/calcium interactions in plant growth. Austral J Plant Physiol 27:709–715

    CAS  Google Scholar 

  • Reid RJ, Tester MA, Smith FA (1995) Calcium/aluminium interactions in the cell wall and plasma membrane of Chara. Planta 195:362–368

    CAS  Google Scholar 

  • Reinhold L, Seiden A, Volokita M (1984) Is modulation of the rate of proton pumping a key event in osmoregulation? Plant Physiol 75:846–849

    Article  PubMed  CAS  Google Scholar 

  • Reggiani R (1997) Alteration of levels of cyclic nucleotides in response to anaerobiosis in rice seedlings. Plant Cell Physiol 38:740–742

    Google Scholar 

  • Rengel Z (1992) Role of calcium in aluminium toxicity. New Phytol 121:499–513

    Article  CAS  Google Scholar 

  • Rengel Z (1994) Effects of Al, rare earth elements, and other metals on net 45Ca2+ uptake by Amaranthus protoplasts. J Plant Physiol 143:47–51

    Article  CAS  Google Scholar 

  • Rengel Z (2004) Aluminium cycling in the soil-plant-animal-human continuum. Biometals 17:669–689

    Article  PubMed  CAS  Google Scholar 

  • Rengel Z, Elliott DC (1992) Mechanism of aluminum inhibition of net 45Ca2+ uptake by amaranthus protoplasts. Plant Physiol 98:632–638

    Article  PubMed  CAS  Google Scholar 

  • Rengel Z, Zhang WH (2003) Role of dynamics of intracellular calcium in aluminium toxicity syndrome. New Phytol 159:295–314

    Article  CAS  Google Scholar 

  • Rengel Z, Pineros M, Tester M (1995) Transmembrane calcium fluxes during Al stress. Plant Soil 171:125–130

    Article  CAS  Google Scholar 

  • Reuveni M, Colombo R, Lerner HR, Pradet A, Polyakoff-Mayber A (1987) Osmotically induced proton extrusion from carrot cells in suspension culture. Plant Physiol 85:383–388

    Article  PubMed  CAS  Google Scholar 

  • Rojo E, Martin R, Carter C, Zouhar J, Pan SQ, Plotnikova J, Jin HL, Paneque M, Sanchez-Serrano JJ, Baker B, Ausubel FM, Raikhel NV (2004) VPE gamma exhibits a caspase-like activity that contributes to defense against pathogens. Curr Biol 14:1897–1906

    Article  PubMed  CAS  Google Scholar 

  • Ryan PR, Kochian LV (1993) Interaction between aluminum toxicity and calcium uptake at the root apex in near-isogenic lines of wheat (Triticum aestivum L.) differing in aluminum tolerance. Plant Physiol 102:975–982

    PubMed  CAS  Google Scholar 

  • Ryan PR, Newman IA, Arif I (1992) Rapid calcium exchange for protons and potassium in cell walls of Chara. Plant Cell Environ 15:675–683

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995) Characterisation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103–110

    Article  CAS  Google Scholar 

  • Ryan PR, Reid RJ, Smith FA (1997) Direct evaluation of the Ca2+-displacement hypothesis for Al toxicity. Plant Physiol 113:1351–1357

    PubMed  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  PubMed  CAS  Google Scholar 

  • Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691–706

    Article  PubMed  CAS  Google Scholar 

  • Santos CLV, Campos A, Azevedo H, Caldeira G (2001) In situ and in vitro senescence induced by KCl stress: nutritional imbalance, lipid peroxidation and antioxidant metabolism. J Exp Bot 52:351–360

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T et al (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  PubMed  CAS  Google Scholar 

  • Schvarzstein M (1997) Changes in host plasma membrane ion fluxes during the Gomphrena globosa–Papaya Mosaic Virus interaction. M Sci Thesis, Department of Botany. University of Toronto, Canada

    Google Scholar 

  • Serrano R, Culianz-Macia FA, Moreno V (1999) Genetic engineering of salt and drought tolerance with yeast regulatory genes. Sci Hort 78:261–269

    Article  CAS  Google Scholar 

  • Setter TL, Waters I (2003) Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 253:1–34

    Article  CAS  Google Scholar 

  • Shabala S (2000) Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant Cell Environ 23:825–837

    Article  CAS  Google Scholar 

  • Shabala S (2003) Regulation of potassium transport in leaves: from molecular to tissue level. Ann Bot 92:627–634

    Article  PubMed  CAS  Google Scholar 

  • Shabala S. (2007) Transport from root to shoot. In: Yeo AR, Flowers TJ (ed) Plant solute transport. Blackwell Publishing, Oxford. pp. 214–234

    Google Scholar 

  • Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. J Exp Bot 60:709–711

    Article  PubMed  CAS  Google Scholar 

  • Shabala S (2011) Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol 190:289–298

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Hariadi Y (2005) Effects of magnesium availability on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll. Planta 221:56–65

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Lew RR (2002) Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129:290–299

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Mackay A (2011) Ion transport in Halophytes. Adv Bot Res 57:151–199

    Article  CAS  Google Scholar 

  • Shabala S, Newman IA (1998) Osmotic sensitivity of Ca2+ and H+ transporters in corn roots–effect on fluxes and their oscillations in the elongation region. J Membrane Biol 161:45–54

    Article  CAS  Google Scholar 

  • Shabala S, Newman I (2000) Salinity effects on the activity of plasma membrane H+ and Ca2+ transporters in bean leaf mesophyll: Masking role of the cell wall. Ann Bot 85:681–686

    Article  CAS  Google Scholar 

  • Shabala S, Shabala L (2002) Kinetics of net H+, Ca2+, K+, Na+, NH4 +, and Cl- fluxes associated with post-chilling recovery of plasma membrane transporters in Zea mays leaf and root tissues. Physiol Plant 114:47–56

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Shabala L (2011) Ion transport and osmotic adjustment in plants and bacteria. BioMol Concepts 2:407–419

    Article  Google Scholar 

  • Shabala S, Babourina O, Newman I (2000) Ion-specific mechanisms of osmoregulation in bean mesophyll cells. J Exp Bot 51:1243–1253

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Shabala L, Van Volkenburgh E (2003) Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Funct Plant Biol 30:507–514

    Article  CAS  Google Scholar 

  • Shabala L, Cuin TA, Newman IA, Shabala S (2005a) Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta 222:1041–1050

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Shabala L, Van Volkenburgh E, Newman I (2005b) Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves. J Exp Bot 56:1369–1378

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653–1665

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Cuin TA, Pottosin I (2007a) Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Let 581:1993–1999

    Article  CAS  Google Scholar 

  • Shabala S, Cuin TA, Prismall L, Nemchinov LG (2007b) Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta 227:189–197

    Article  PubMed  CAS  Google Scholar 

  • Shabala L, Bowman J, Brown J, Ross T, McMeekin T, Shabala S (2009a) Ion transport and osmotic adjustment in Escherichia coli in response to ionic and non-ionic osmotica. Environ Microbiol 11:137–148

    Article  PubMed  CAS  Google Scholar 

  • Shabala L, McMeekin T, Shabala S (2009b) Osmotic adjustment and requirement for sodium in marine protist thraustochytrid. Environ Microbiol 11:1835–1843

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Babourina O, Rengel Z, Nemchinov LG (2010a) Non-invasive microelectrode potassium flux measurements as a potential tool for early recognition of virus-host compatibility in plants. Planta 232:807–815

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Cuin TA, Pang JY, Percey W, Chen ZH, Conn S, Eing C, Wegner LH (2010b) Xylem ionic relations and salinity tolerance in barley. Plant J 61:839–853

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Baekgaard L, Shabala L, Fuglsang A, Babourina O, Palmgren MG, Cuin TA, Rengel Z, Nemchinov LG (2011a) Plasma membrane Ca2+ transporters mediate virus-induced acquired resistance to oxidative stress. Plant Cell Environ 34:406–417

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Baekgaard L, Shabala L, Fuglsang AT, Cuin TA, Nemchinov LG, Palmgren MG (2011b) Endomembrane Ca2+-ATPases play a significant role in virus-induced adaptation to oxidative stress. Plant Signal Behav 6:135–138

    Article  CAS  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol 115:527–532

    PubMed  CAS  Google Scholar 

  • Shi HZ, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochem 28:1057–1060

    Article  CAS  Google Scholar 

  • Subbaiah CC, Sachs MM (2003a) Calcium-mediated responses of maize to oxygen deprivation. Russ J Plant Physiol 50:752–761

    Article  CAS  Google Scholar 

  • Subbaiah CC, Sachs MM (2003b) Molecular and cellular adaptations of maize to flooding stress. Ann Bot 91:119–127

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah CC, Bush DS, Sachs MM (1998) Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells. Plant Physiol 118:759–771

    Article  PubMed  CAS  Google Scholar 

  • Tamura S, Kuramochi H, Ishizawa K (2001) Involvement of calcium ion in the stimulated shoot elongation of arrowhead tubers under anaerobic conditions. Plant Cell Physiol 42:717–722

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Newton RJ (2005) Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Reg 46:31–43

    Article  CAS  Google Scholar 

  • Tanoi K, Junko H, Kazutoshi S, Yoshitake H, Hiroki N, Tomoko MN (2005) Analysis of potassium uptake by rice roots treated with aluminum using a positron emitting nuclide, 38K. Soil Sci Plant Nutr 51:715–717

    Article  CAS  Google Scholar 

  • Taylor GJ et al (2000) Direct measurement of aluminum uptake and distribution in single cells of Chara corallina. Plant Physiol 123:987–996

    Article  PubMed  CAS  Google Scholar 

  • Tazawa M (2003) Cell physiological aspects of the plasma membrane electrogenic H+ pump. J Plant Res 116:419–442

    Article  PubMed  CAS  Google Scholar 

  • Tegg RS, Melian L, Wilson CR, Shabala S (2005) Plant cell growth and ion flux responses to the Streptomycete phytotoxin thaxtomin-A: calcium and hydrogen flux patterns revealed by the non-invasive MIFE technique. Plant Cell Physiol 46:638–648

    Article  PubMed  CAS  Google Scholar 

  • Teodoro AE, Zingarelli L, Lado P (1998) Early changes of Cl- efflux and H+ extrusion induced by osmotic stress in Arabidopsis thaliana cells. Physiol Plant 102:29–37

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  • Tyerman SD, Skerrett M, Garrill A, Findlay GP, Leigh RA (1997) Pathways for the permeation of Na+ and Cl- into protoplasts derived from the cortex of wheat roots. J Exp Bot 48:459–480

    Article  PubMed  CAS  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Higgins VJ, Blumwald E (1994) Plant defence response to fungal pathogens. Activation of host-plasma membrane H+-ATPase by elicitor-induced enzyme dephosphorylation. Plant Physiol 104:209–215

    PubMed  CAS  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (1999) Salt stress in Mesembryanthemum crystallinum L cell suspensions activates adaptive mechanisms similar to those observed in the whole plant. Planta 207:426–435

    Article  PubMed  CAS  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Garcia-Ramirez L, Pantoja O (2005) Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol 139:1507–1517

    Article  PubMed  CAS  Google Scholar 

  • Verbelen JP, De Cnodder T, Le J, Vissenberg K, Baluška F (2006) The root apex of Arabidopsis thaliana consists of four distinct zones of cellular activities: meristematic zone, transition zone, fast elongation zone, and growth terminating zone. Plant Signal Behav 1:296–304

    Article  PubMed  Google Scholar 

  • Verma S, Mishra SN (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol 162:669–677

    Article  PubMed  CAS  Google Scholar 

  • Very A–A, Davies JM (2000) Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proc Natl Acad Sci USA 97:9801–9806

    Article  PubMed  CAS  Google Scholar 

  • Very AA, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trend Plant Sci 7:168–175

    Article  CAS  Google Scholar 

  • von Uexkull HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

  • Walker EL, Connolly EL (2008) Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Curr Opin Plant Biol 11:530–535

    Article  PubMed  CAS  Google Scholar 

  • Wang PT, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Lam E (2004) Recent advance in the study of caspase-like proteases and Bax inhibitor-1 in plants: their possible roles as regulator of programmed cell death. Mol Plant Pathol 5:65–70

    Article  PubMed  CAS  Google Scholar 

  • Wegner LH, Raschke K (1994) Ion channels in the xylem parenchyma of barley roots–a procedure to isolate protoplasts from this tissue and a patch- clamp exploration of salt passageways into xylem vessels. Plant Physiol 105:799–813

    PubMed  CAS  Google Scholar 

  • Wegner LH, Stefano G, Shabala L, Rossi M, Mancuso S, Shabala S (2011) Sequential depolarization of root cortical and stelar cells induced by an acute salt shock–implications for Na+ and K+ transport into xylem vessels. Plant Cell Environ 34:859–869

    Article  PubMed  CAS  Google Scholar 

  • Werner JE, Finkelstein RR (1995) Arabidopsis mutants with reduced response to NaCl and osmotic-stress. Physiol Plantar 93:659–666

    Article  CAS  Google Scholar 

  • Wherrett T, Ryan PR, Delhaize E, Shabala S (2005) Effect of aluminium on membrane potential and ion fluxes at the apices of wheat roots. Funct Plant Biol 32:199–208

    Article  CAS  Google Scholar 

  • White PJ (1998) Calcium channels in the plasma membrane of root cells. Ann Bot 81:173–183

    Article  CAS  Google Scholar 

  • Williamson CL, Slocum RD (1992) Molecular-cloning and evidence for osmoregulation of the Δ1-pyrroline-5-carboxylate reductase (proC) gene in pea (Pisum sativum L). Plant Physiol 100:1464–1470

    Article  PubMed  CAS  Google Scholar 

  • Wyn Jones RG, Pritchard J (1989) Stresses, membranes and cell walls. In: Jones HG, Flowers TJ, Jones MB (eds) Plants under stress: biochemistry, physiology, and ecology and their application to plant improvement. University Press, Cambridge, pp 95–114

    Chapter  Google Scholar 

  • Xia JH, Roberts JKM (1996) Regulation of H+ extruction and cytoplasmic pH in maize root tips acclimated to a low-oxigen environment. Plant Physiol 111:227–233

    PubMed  CAS  Google Scholar 

  • Xu RR, Qi SD, Lu LT, Chen CT, Wu CA, Zheng CC (2011) A DExD H box RNA helicase is important for K deprivation responses and tolerance in Arabidopsis thaliana. FEBS J 278:2296–2306

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Zhang F, Zhao M, An L, Zhang L, Chen N (2006) Properties of plasma membrane H+-ATPase in salt-treated Populus euphratica callus. Plant Cell Rep 26:229–235

    Article  PubMed  CAS  Google Scholar 

  • Yang G et al (2010) Vesicle-related OsSEC27P enhances H+ secretion in the iron deficient transgenic tobacco root. Chin Sci Bull 55:3298–3304

    Article  CAS  Google Scholar 

  • Zepeda-Jazo I, Velarde-Buendía A-M, Enríquez-Figueroa R, Bose J, Shabala S, Muñiz-Murguía J, Pottosin I (2011) Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiol 157:2167–2180

    Google Scholar 

  • Zhang WH, Ryan PR, Tyerman SD (2001) Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiol 125:1459–1472

    Article  PubMed  CAS  Google Scholar 

  • Zhou M (2010) Improvement of plant waterlogging tolerance. In: Mancuso S, Shabala S (eds) Waterlogging signalling and tolerance in plants. Springer, Berlin

    Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann S, Frachisse JM, Thomine S, Barbier-Brygoo H, Guern J (1998) Elicitor-induced chloride efflux and anion channels in tobacco cell suspensions. Plant Physiol Biochem 36:665–674

    Article  CAS  Google Scholar 

  • Zimmermann S, Ehrhardt T, Plesch G, Muller-Rober B (1999) Ion channels in plant signalling. Cell Mol Life Sci 55:183–203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grain Research and Development Corporation and Australian Research Council grants to Prof Sergey Shabala. The authors are grateful to Dr Ian Newman for his critical reading and valuable suggestions on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Shabala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shabala, S., Bose, J. (2012). Application of Non-invasive Microelectrode Flux Measurements in Plant Stress Physiology. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29119-7_4

Download citation

Publish with us

Policies and ethics