Skip to main content

Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapeutics

  • Chapter
  • First Online:
Book cover Protein-Protein Interactions

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 8))

Abstract

The p53 tumor suppressor protein is a transcriptional factor that plays a key role in regulation of several cellular processes, including the cell cycle, apoptosis, DNA repair, and angiogenesis. The murine double minute 2 (MDM2) protein is the primary cellular inhibitor of p53, functioning through direct interaction with p53. Design of non-peptide, small-molecule inhibitors that block the MDM2-p53 interaction has been sought as an attractive strategy to activate p53 for the treatment of cancer and other human diseases. In recent years, major advances have been made in the design of small-molecule inhibitors of the MDM2-p53 interaction in recent years, and several compounds have moved into advanced preclinical development or clinical trials. In this chapter, we will highlight these advances in the design and development of MDM2 inhibitors, and discuss lessons learned from these efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teodoro JG, Evans SK, Green MR (2007) Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med 85:1175–1186

    Article  CAS  Google Scholar 

  2. Fridman JS (2003) Lowe SW (2003) control of apoptosis by p53. Oncogene 22:9030–9040

    Article  CAS  Google Scholar 

  3. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  CAS  Google Scholar 

  4. Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263

    Article  CAS  Google Scholar 

  5. DeLeo AB, Jay G, Appella E et al (1979) Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 76:2420–2424

    Article  CAS  Google Scholar 

  6. Linzer DI, Levine AJ (1979) Characterization of a 54 K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52

    Article  CAS  Google Scholar 

  7. Oren M, Levine AJ (1983) Molecular cloning of a cDNA specific for the murine p53 cellular tumor antigen. Proc Natl Acad Sci USA 80:56–59

    Article  CAS  Google Scholar 

  8. Feki A, Irminger-Finger I (2004) Mutational spectrum of p53 mutations in primary breast and ovarian tumors. Crit Rev Oncol Hematol 52:103–116

    Article  Google Scholar 

  9. Momand J, Zambetti GP, Olson DC et al (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245

    Article  CAS  Google Scholar 

  10. Fakharzadeh SS, Trusko SP, George DL (1991) Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 10:1565–1569

    CAS  Google Scholar 

  11. Fakharzadeh SS, Rosenblum-Vos L, Murphy M et al (1993) Structure and organization of amplified DNA on double minutes containing the mdm2 oncogene. Genomics 15:283–290

    Article  CAS  Google Scholar 

  12. Hainaut P, Hollstein M (2000) p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 77:81–137

    Article  CAS  Google Scholar 

  13. Freedman DA, Wu L, Levine AJ (1999) Functions of the MDM2 oncoprotein. Cell Mol Life Sci 55:96–107

    Article  CAS  Google Scholar 

  14. Juven-Gershon T, Oren M (1999) Mdm2: the ups and downs. Mol Med 5:71–83

    CAS  Google Scholar 

  15. Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7:1126–1132

    Article  CAS  Google Scholar 

  16. Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208

    Article  CAS  Google Scholar 

  17. de Oca M, Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206

    Article  Google Scholar 

  18. Bond GL, Hu W, Bond EE et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602

    Article  CAS  Google Scholar 

  19. Oliner JD, Kinzler KW, Meltzer PS et al (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83

    Article  CAS  Google Scholar 

  20. Zhou M, Gu L, Abshire TC et al (2000) Incidence and prognostic significance of MDM2 oncoprotein overexpression in relapsed childhood acute lymphoblastic leukemia. Leukemia 14:61–67

    Article  CAS  Google Scholar 

  21. Rayburn E, Zhang R, He J, Wang H (2005) MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr Cancer Drug Targets 5:27–41

    Article  CAS  Google Scholar 

  22. Momand J, Jung D, Wilczynski S, Niland J (1998) The MDM2 gene amplification database. Nucleic Acids Res 26:3453–3459

    Article  CAS  Google Scholar 

  23. Gunther T, Schneider-Stock R, Hackel C et al (2000) Mdm2 gene amplification in gastric cancer correlation with expression of Mdm2 protein and p53 alterations. Mod Pathol 13:621–626

    Article  CAS  Google Scholar 

  24. Bond GL, Hu W, Levine AJ (2005) MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets 5:3–8

    Article  CAS  Google Scholar 

  25. Capoulade C, Bressac-de Paillerets B, Lefrere I et al (1998) Overexpression of MDM2, due to enhanced translation, results in inactivation of wild-type p53 in Burkitt’s lymphoma cells. Oncogene 16:1603–1610

    Article  CAS  Google Scholar 

  26. Momand J, Wu HH, Dasgupta G (2000) MDM2 – master regulator of the p53 tumor suppressor protein. Gene 242:15–29

    Article  CAS  Google Scholar 

  27. Ganguli G, Abecassis J, Wasylyk B (2000) MDM2 induces hyperplasia and premalignant lesions when expressed in the basal layer of the epidermis. EMBO J 19:5135–5147

    Article  CAS  Google Scholar 

  28. Kemp CJ, Donehower LA, BradleyA BA (1993) Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell 74:813–822

    Article  CAS  Google Scholar 

  29. Chen J, Marechal V, Levine AJ (1993) Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 13:4107–4114

    CAS  Google Scholar 

  30. Picksley SM, Vojtesek B, Sparks A, Lane DP (1994) Immunochemical analysis of the interaction of p53 with MDM2; fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene 9:2523–2529

    CAS  Google Scholar 

  31. Kussie PH, Gorina S, Marechal V et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953

    Article  CAS  Google Scholar 

  32. Garcia-Echeverria C, Chene P, Blommers MJ, Furet P (2000) Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. J Med Chem 43:3205–3208

    Article  CAS  Google Scholar 

  33. Vassilev LT, Vu BT, Graves B et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  CAS  Google Scholar 

  34. Grasberger BL, Lu T, Schubert C et al (2005) Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem 48:909–912

    Article  CAS  Google Scholar 

  35. Allen JG, Bourbeau MP, Wohlhieter GE et al (2009) Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse double minute 2-tumor protein 53 protein-protein interaction. J Med Chem 52:7044–7053

    Article  CAS  Google Scholar 

  36. Orner BP, Ernst JT, Hamilton AD (2001) Toward proteomimetics: terphenyl derivatives as structural and functional mimics of extended regions of an alpha-helix. J Am Chem Soc 123:5382–5383

    Article  CAS  Google Scholar 

  37. Yin H, Lee GI, Park HS et al (2005) Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. Angew Chem Int Ed Engl 44:2704–2707

    Article  CAS  Google Scholar 

  38. Stoll R, Renner C, Hansen S et al (2001) Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry 40:336–344

    Article  CAS  Google Scholar 

  39. Go ML, Wu X, Liu XL (2005) Chalcones: an update on cytotoxic and chemoprotective properties. Curr Med Chem 12:481–499

    Article  CAS  Google Scholar 

  40. Galatin PS, Abraham DJ (2004) A nonpeptidic sulfonamide inhibits the p53-mdm2 interaction and activates p53-dependent transcription in mdm2-overexpressing cells. J Med Chem 47:4163–4165

    Article  CAS  Google Scholar 

  41. Galatin PS, Abraham DJ (2001) QSAR: hydropathic analysis of inhibitors of the p53-mdm2 interaction. Proteins 45:169–175

    Article  CAS  Google Scholar 

  42. Lu Y, Nikolovska-Coleska Z, Fang X et al (2006) Discovery of a nanomolar inhibitor of the human murine double minute 2 (MDM2)-p53 interaction through an integrated, virtual database screening strategy. J Med Chem 49:3759–3762

    Article  CAS  Google Scholar 

  43. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  44. Verdonk ML, Cole JC, Hartshorn MJ et al (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623

    Article  CAS  Google Scholar 

  45. Eldridge MD, Murray CW, Auton TR et al (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 11:425–445

    Article  CAS  Google Scholar 

  46. Wang R, Lai L, Wang W (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16:11–26

    Article  CAS  Google Scholar 

  47. Bowman AL, Nikolovska-Coleska Z, Zhong H et al (2007) Small molecule inhibitors of the MDM2-p53 interaction discovered by ensemble-based receptor models. J Am Chem Soc 129:12809–12814

    Article  CAS  Google Scholar 

  48. Ding K, Lu Y, Nikolovska-Coleska Z et al (2005) Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 127:10130–10131

    Article  CAS  Google Scholar 

  49. Ding K, Lu Y, Nikolovska-Coleska Z et al (2006) Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem 49:3432–3435

    Article  CAS  Google Scholar 

  50. Shangary S, Qin D, McEachern D et al (2008) Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA 105:3933–3938

    Article  CAS  Google Scholar 

  51. Yu S, Qin D, Shangary S et al (2009) Potent and orally active small-molecule inhibitors of the MDM2−p53 interaction. J Med Chem 52:7970–7973

    Article  CAS  Google Scholar 

  52. Wasserman R (2010) Patient selection strategies for the development of MDM2 inhibitors. http://www.cmod.org/images/CMOD_Presentations_5-28-10/Wasserman%20CMOD%20Ottawa%20May%2017%202010.pdf

  53. Uoto K, Kawato H, Sugimoto Y et al (2009) WO 2009/151069, 12 Dec 2009

    Google Scholar 

  54. Wang S, Sun W, Yu S et al (2011) Highly potent and optimized small-molecule inhibitors of MDM2 achieve complete tumor regression in animal models of solid tumors and leukemia. Abstract LB-204. AACR 102nd annual meeting, Orlando, FL

    Google Scholar 

  55. Bartkovitz D, Chu X-J, Ding Q et al (2011) WO 2011/067185, 9 June 2011

    Google Scholar 

  56. Liu J-J, Zhang J, Zhang Z (2011) WO 2011/101297, 25 Aug 2011

    Google Scholar 

  57. Czarna A, Beck B, Srivastava S et al (2010) Robust generation of lead compounds for protein-protein interactions by computational and MCR chemistry: p53/Hdm2 antagonists. Angew Chem Int Ed Engl 49:5352–5356

    Article  CAS  Google Scholar 

  58. Boettcher A, Buschmann N, Furet P et al (2008) WO 2008/119741, 9 Oct 2008

    Google Scholar 

  59. Bold G, Furet P, Gessier F et al (2011) WO 2011/023677, 3 Mar 2011

    Google Scholar 

  60. Berghausen J, Buschmann N, Furet P et al (2011) WO 2011/076786, 30 June 2011

    Google Scholar 

  61. Hardcastle IR, Liu J, Valeur E et al (2011) Isoindolinone inhibitors of the murine double minute 2 (MDM2)-p53 protein-protein interaction: structure-activity studies leading to improved potency. J Med Chem 54:1233–1243

    Article  CAS  Google Scholar 

  62. Burdack C, Kalinski C, Ross G et al (2010) WO 2010/028862, 18 Mar 2010

    Google Scholar 

  63. Ma Y, Lahue BR, Shipps Jr, GW et al (2011) Substituted piperidines that increase P53 activity and the uses thereof. US Patent 7,884,107 B2, 8 Feb 2011

    Google Scholar 

  64. Popowicz GM, Czarna A, Wolf S et al (2010) Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle 9:1104–1111

    Article  CAS  Google Scholar 

  65. Tovar C, Rosinski J, Filipovic Z et al (2006) Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 103:1888–1893

    Article  CAS  Google Scholar 

  66. Patton JT, Mayo LD, Singhi AD et al (2006) Levels of HdmX expression dictate the sensitivity of normal and transformed cells to Nutlin-3. Cancer Res 66:3169–3176

    Article  CAS  Google Scholar 

  67. Saddler C, Ouillette P, Kujawski L et al (2007) Comprehensive biomarker and genomic analysis identifies P53 status as the major determinant of response to MDM2 inhibitors in chronic lymphocytic leukemia. Blood 111:1584–1593

    Article  Google Scholar 

  68. Long J, Parkin B, Ouillette P et al (2010) Multiple distinct molecular mechanisms influence sensitivity and resistance to MDM2 inhibitors in adult acute myelogenous leukemia. Blood 116:71–80

    Article  CAS  Google Scholar 

  69. Sarek G, Kurki S, Enback J et al (2007) Reactivation of the p53 pathway as a treatment modality for KSHV-induced lymphomas. J Clin Invest 117:1019–1028

    Article  CAS  Google Scholar 

  70. Smith MA, Kang MH, Reynolds CP et al (2011) Pediatric preclinical testing program (PPTP) stage 1 evaluation of the p53-MDM2 antagonist RG7112: early evidence for high activity against MLL-rearranged leukemias. Abstract C103. AACR-NCI-EORTC international conference: molecular targets and cancer therapeutics, San Francisco, CA

    Google Scholar 

  71. Lowe SW, Schmitt EM, Smith SW et al (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847–849

    Article  CAS  Google Scholar 

  72. Potten CS, Wilson JW, Booth C (1997) Regulation and significance of apoptosis in the stem cells of the gastrointestinal epithelium. Stem Cells 15:82–93

    Article  CAS  Google Scholar 

  73. Ringshausen I, O’Shea CC, Finch AJ et al (2006) Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 10:501–514

    Article  CAS  Google Scholar 

  74. Bottger V, Bottger A, Garcia-Echeverria C et al (1999) Comparative study of the p53-mdm2 and p53-MDMX interfaces. Oncogene 18:189–199

    Article  CAS  Google Scholar 

  75. Hu B, Gilkes DM, Farooqi B et al (2006) MDMX overexpression prevents p53 activation by the MDM2 inhibitor Nutlin. J Biol Chem 281:33030–33035

    Article  CAS  Google Scholar 

  76. Wade M, Wong ET, Tang M et al (2006) Hdmx modulates the outcome of p53 activation in human tumor cells. J Biol Chem 281:33036–33044

    Article  CAS  Google Scholar 

  77. Kawai H, Wiederschain D, Kitao H et al (2003) DNA damage-induced MDMX degradation is mediated by MDM2. J Biol Chem 278:45946–45953

    Article  CAS  Google Scholar 

  78. Lau LM, Nugent JK, Zhao X, Irwin MS (2008) HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function. Oncogene 27:997–1003

    Article  CAS  Google Scholar 

  79. Ambrosini G, Sambol EB, Carvajal D et al (2007) Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene 26:3473–3481

    Article  CAS  Google Scholar 

  80. LaRusch GA, Jackson MW, Dunbar JD et al (2007) Nutlin3 blocks vascular endothelial growth factor induction by preventing the interaction between hypoxia inducible factor 1alpha and Hdm2. Cancer Res 67:450–454

    Article  CAS  Google Scholar 

  81. Colaluca IN, Tosoni D, Nuciforo P et al (2008) NUMB controls p53 tumour suppressor activity. Nature 451:76–80

    Article  CAS  Google Scholar 

  82. Secchiero P, Corallini F, Gonelli A et al (2007) Antiangiogenic activity of the MDM2 antagonist Nutlin-3. Circ Res 100:61–69

    Article  CAS  Google Scholar 

  83. Binder BR (2007) A novel application for murine double minute 2 antagonists: the p53 tumor suppressor network also controls angiogenesis. Circ Res 100:13–14

    Article  CAS  Google Scholar 

  84. Carvajal D, Tovar C, Yang H et al (2005) Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res 65:1918–1924

    Article  CAS  Google Scholar 

  85. Secchiero P, Barbarotto E, Tiribelli M et al (2006) Functional integrity of the p53-mediated apoptotic pathway induced by the nongenotoxic agent Nutlin-3 in B-cell chronic lymphocytic leukemia (B-CLL). Blood 107:4122–4129

    Article  CAS  Google Scholar 

  86. Kojima K, Konopleva M, McQueen T et al (2006) Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 108:993–1000

    Article  CAS  Google Scholar 

  87. Coll-Mulet L, Iglesias-Serret D, Santidrian AF et al (2006) MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood 107:4109–4114

    Article  CAS  Google Scholar 

  88. Kojima K, Konopleva M, Samudio IJ et al (2005) MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 106:3150–3159

    Article  CAS  Google Scholar 

  89. Secchiero P, Zerbinati C, di Iasio MG et al (2007) Synergistic cytotoxic activity of recombinant TRAIL plus the non-genotoxic activator of the p53 pathway Nutlin-3 in acute myeloid leukemia cells. Curr Drug Metab 8:395–403

    Article  CAS  Google Scholar 

  90. Drakos E, Thomaides A, Medeiros LJ et al (2007) Inhibition of p53-murine double minute 2 interaction by Nutlin-3A stabilizes p53 and induces cell cycle arrest and apoptosis in Hodgkin lymphoma. Clin Cancer Res 13:3380–3387

    Article  CAS  Google Scholar 

  91. Saha MN, Jiang H, Jayakar J et al (2010) MDM2 antagonist Nutlin plus proteasome inhibitor velcade combination displays a synergistic anti-myeloma activity. Cancer Biol Ther 9:936–944

    Article  CAS  Google Scholar 

  92. Aziz MH, Shen H, Maki CG (2011) Acquisition of p53 mutations in response to the non-genotoxic p53 activator Nutlin-3. Oncogene 30:4678–4686

    Article  CAS  Google Scholar 

  93. Andreeff M, Kojima K, Padmanabhan S et al (2010) A multi-center, open-label, phase I study of single agent RG7112, a first in class p53-MDM2 antagonist, in patients with relapsed/refractory acute myeloid and lymphoid leukemias (AML/ALL) and refractory chronic lymphocytic leukemia/small cell lymphocytic lymphomas (CLL/SCLL). Abstract 657. ASH 53rd annual meeting 2001, Anaheim, CA

    Google Scholar 

  94. Ray-Coquard IL, Blay J, Italiano A et al (2011) Neoadjuvant MDM2 antagonist RG7112 for well-differentiated and dedifferentiated liposarcomas (WD/DD LPS): a pharmacodynamic (PD) biomarker study. Abstract 10007b. 2011 ASCO annual meeting, Chicago, IL

    Google Scholar 

  95. Beryozkina A, Nichols GL, Reckner M et al (2011) Pharmacokinetics (PK) and pharmacodynamics (PD) of RG7112, an oral murine double minute 2 (MDM2) antagonist, in patients with leukemias and solid tumors. Abstract 3039. 2011 ASCO annual meeting, Chicago, IL

    Google Scholar 

Download references

Acknowledgements

Funding from the National Cancer Institute/National Institutes of Health, the Prostate Cancer Foundation, the Leukemia and Lymphoma Society, Ascenta Therapeutics and Sanofi is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaomeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, S., Zhao, Y., Bernard, D., Aguilar, A., Kumar, S. (2012). Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapeutics. In: Wendt, M. (eds) Protein-Protein Interactions. Topics in Medicinal Chemistry, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28965-1_2

Download citation

Publish with us

Policies and ethics