Skip to main content

Evolutionary Ecology of Mammalian Hibernation Phenology

  • Chapter
  • First Online:
Living in a Seasonal World

Abstract

Hibernation is assumed to have evolved in response to environmental energy and/or water shortages, yet the environment in which it has most often been studied is the laboratory. Our understanding of the ecological and evolutionary significance of natural hibernation expression thus lags behind the impressive body of work that has been done on its physiological and biochemical mechanisms. In this chapter, I review studies that have been done on phenological variation in wild populations and argue for a tightened focus on individual variation. Climate change is altering temporal resource distributions worldwide and the impact that this may have on populations will depend on their ability to adjust their phenologies through phenotypic plasticity and/or microevolution. Making predictions regarding these two phenomena requires detailed information on the environmental and genetic contributions to, and the fitness consequences of, phenological variation. I describe each of these components, in turn, and briefly explain the analytical procedures used to calculate them. Although, to date, empirical information of this sort is relatively sparse for wild hibernators, recent studies have begun to provide it and the theoretical and analytical tools with which to undertake further study are becoming increasingly accessible. Through their application, a more thorough understanding of the role hibernation plays in the natural ecology of mammalian populations, and how these populations may be affected by climate change should be attainable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bieber C, Ruf T (2009) Summer dormancy in edible dormice (Glis glis) without energetic constraints. Naturwissenschaften 96:165–171

    Article  PubMed  CAS  Google Scholar 

  • Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83

    Article  PubMed  CAS  Google Scholar 

  • Both C, van Asch M, Bijlsma RG, van den Burg AB, Visser ME (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J Anim Ecol 78:73–83

    Article  PubMed  Google Scholar 

  • Charmantier A, McCleery RH, Cole LR, Perrins C, Kruuk LEB, Sheldon BC (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320:800–803

    Article  PubMed  CAS  Google Scholar 

  • Davis DE (1976) Hibernation and circannual rhythms of food consumption in marmots and ground squirrels. Q Rev Biol 51:477–514

    Article  PubMed  CAS  Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton

    Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow

    Google Scholar 

  • French AR (1988) The patterns of mammalian hibernation. Am Sci 76:569–575

    Google Scholar 

  • Geiser F (2007) Yearlong hibernation in a marsupial mammal. Naturwissenschaften 94:941–944

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68:935–966

    Google Scholar 

  • Gummer DL (2005) Geographic variation in torpor patterns: the northernmost prairie dogs and kangaroo rats. PhD thesis. University of Saskatchewan, Saskatoon

    Google Scholar 

  • Harlow HJ, Frank CL (2001) The role of dietary fatty acids in the evolution of spontaneous and facultative hibernation patterns in prairie dogs. J Comp Phys B 171:77–84

    Article  CAS  Google Scholar 

  • Humphries MM, Thomas DW, Kramer DL (2003a) The role of energy availability in mammalian hibernation: a cost-benefit approach. Physiol Biochem Zool 76:165–179

    Article  PubMed  Google Scholar 

  • Humphries MM, Kramer DL, Thomas DW (2003b) The role of energy availability in mammalian hibernation: an experimental test in free-ranging eastern chipmunks. Physiol Biochem Zool 76:180–186

    Article  PubMed  Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kawamichi M (1996) Ecological factors affecting annual variation in commencement of hibernation in wild chipmunks (Tamias sibiricus). J Mamm 77:731–744

    Article  Google Scholar 

  • Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, Hoang A, Gilbert P, Beerli P (2001) The strength of phenotypic selection in natural populations. Am Nat 157:245–261

    Article  PubMed  CAS  Google Scholar 

  • Kobbe S, Ganzhorn JU, Dausmann KH (2011) Extreme individual flexibility of heterothermy in free-ranging Malagasy mouse lemurs (Microcebus griseorufus). J Comp Physiol B 181:165–173

    Article  PubMed  Google Scholar 

  • Kruuk LEB (2004) Estimating genetic parameters in natural populations using the ‘animal model’. Philos Trans R Soc Lond B Biol Sci 359:873–890

    Article  PubMed  Google Scholar 

  • Kruuk LEB, Hadfield JD (2007) How to separate genetic and environmental causes of similarity between relatives. J Evol Biol 20:1890–1903

    Article  PubMed  CAS  Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226

    Article  Google Scholar 

  • Landry-Cuerrier M, Munro D, Thomas DW, Humphries MM (2008) Climate and resource determinants of fundamental and realized metabolic niches of hibernating chipmunks. Ecology 89:3306–3316

    Article  PubMed  CAS  Google Scholar 

  • Lane JE, Kruuk LEB, Charmantier A, Murie JO, Coltman DW, Buoro M, Raveh S, Dobson FS (2011) A quantitative genetic analysis of hibernation emergence date in a wild population of Columbian ground squirrels. J Evol Biol 24:1949–1959

    Article  PubMed  CAS  Google Scholar 

  • Lehmer EM, Savage LT, Antolin MF, Biggins DE (2006) Extreme plasticity in thermoregulatory behaviors of free-ranging black-tailed prairie dogs. Physiol Biochem Zool 79:454–467

    Article  PubMed  Google Scholar 

  • Lehmer EM, Van Horne B, Kulbartz B, Florant GL (2001) Facultative torpor in free-ranging black-tailed prairie dogs (Cynomys ludovicianus). J Mamm 82:551–557

    Article  Google Scholar 

  • Liow LH, Fortelius M, Lintulaakso K, Mannila H, Stenseth NC (2009) Lower extinction risk in sleep-or-hide mammals. Am Nat 173:264–272

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2000) Daily heterothermy in mammals: coping with unpredictable environments. In: Heldmaier G, Klingenspor M (eds) Life in the cold. Springer, Berlin, pp 29–40

    Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and the analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Martin JGA, Nussey DH, Wilson AJ, Réale D (2011) Measuring individual differences in reaction norms in field and experimental studies: a power analysis of random regression models. Methods Ecol Evol 2:362–374

    Article  Google Scholar 

  • Michener GR (1983) Spring emergence schedules and vernal behaviour of Richardson’s ground squirrels: why do males emerge from hibernation before females? Behav Ecol Sociobiol 14:29–38

    Article  Google Scholar 

  • Møller AP (2004) Protandry, sexual selection and climate change. Glob Change Biol 10:2028–2035

    Article  Google Scholar 

  • Møller AP, Rubolini D, Lehikoinen E (2008) Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc Natl Acad Sci U S A 105:16195–16200

    Article  PubMed  Google Scholar 

  • Morbey YE, Ydenberg RC (2001) Protandrous arrival timing to breeding areas: a review. Ecol Lett 4:663–673

    Article  Google Scholar 

  • Munro D, Thomas DW, Humphries MM (2008) Extreme suppression of aboveground activity by a food-storing hibernator, the eastern chipmunk (Tamias striatus). Can J Zool 86:364–370

    Article  Google Scholar 

  • Murie JO, Harris MA (1982) Annual variation of spring emergence and breeding in Columbian ground squirrels (Spermophilus columbianus). J Mamm 63:431–439

    Article  Google Scholar 

  • Nicol S, Andersen NA (2002) The timing of hibernation in Tasmanian echidnas: why do they do it when they do? Comp Biochem Physiol B 131:603–611

    Article  PubMed  Google Scholar 

  • Nussey DH, Wilson AJ, Brommer JE (2007) The evolutionary ecology of individual phenotypic plasticity in wild populations. J Evol Biol 20:831–844

    Article  PubMed  CAS  Google Scholar 

  • Ozgul A, Childs DZ, Oli MK, Armitage KB, Blumstein DT, Olson LE, Tuljapurkar S, Coulson T (2010) Coupled dynamics of body mass and population growth in response to environmental change. Nature 466:482–485

    Article  PubMed  CAS  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pengelley ET, Fisher KC (1963) The effect of temperature and photoperiod on the yearly hibernating behavior of captive golden-mantled ground squirrels (Citellus lateralis tescorum). Can J Zool 41:1103–1120

    Article  Google Scholar 

  • Pigliucci M (2001) Phenotypic plasticity. John Hopkins University Press, Baltimore

    Google Scholar 

  • Przybylo R, Sheldon BC, Merila J (2000) Climatic effects on breeding and morphology: evidence for phenotypic plasticity. J Anim Ecol 69:395–403

    Article  Google Scholar 

  • Réale D, McAdam AG, Boutin S, Berteaux D (2003) Genetic and plastic responses of a northern mammal to climate change. Proc R Soc Biol Sci Ser B 270:591–596

    Article  Google Scholar 

  • Rismiller PD, McKelvey MW (1996) Sex, torpor and activity in temperate climate echidnas. In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptations to the cold: tenth international hibernation symposium, University of New England Press, Armidale, pp 23–30

    Google Scholar 

  • Sheriff MJ, Kenagy GJ, Richter M, Lee T, Toien O, Kohl F, Buck CL, Barnes BM (2011) Phenological variation in annual timing of hibernation and breeding in nearby populations of Arctic ground squirrels. Proc R Soc Biol Sci Ser B 278:2369–2375

    Article  Google Scholar 

  • Visser ME (2008) Keeping up with a warming world: assessing the rate of adaptation to climate change. Proc R Soc Biol Sci Ser B 275:649–659

    Article  Google Scholar 

  • Wang LCH (1989) Ecological, physiological and biochemical aspects of torpor in mammals and birds. In: Wang LCH (ed) Comparative and environmental physiology. Animal adaptation to cold, vol 4. Springer, Berlin, pp 361–401

    Google Scholar 

  • Young PJ (1990) Hibernating patterns of free-ranging Columbian ground squirrels. Oecologia 83:504–511

    Article  Google Scholar 

Download references

Acknowledgments

My research on hibernation phenology has been supported by the Royal Society of London and the Alberta Conservation Society, as well as, grants from the Agence Nationale de la Recherche of France (to Anne Charmantier) and the Natural Science and Engineering Research Council of Canada (to Stan Boutin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey E. Lane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lane, J.E. (2012). Evolutionary Ecology of Mammalian Hibernation Phenology. In: Ruf, T., Bieber, C., Arnold, W., Millesi, E. (eds) Living in a Seasonal World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28678-0_5

Download citation

Publish with us

Policies and ethics