Skip to main content

Interaction Force, Impedance and Trajectory Adaptation: By Humans, for Robots

  • Chapter
Book cover Experimental Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 79))

Abstract

This paper develops and analyses a biomimetic learning controller for robots. This controller can simultaneously adapt reference trajectory, impedance and feedforward force to maintain stability and minimize the weighted summation of interaction force and performance errors. This controller was inspired from our studies of human motor behavior, especially the human motor control approach dealing with unstable situations typical of tool use. Simulations show that the developed controller is a good model of human motor adaptation. Implementations demonstrate that it can also utilise the capabilities of joint torque controlled robots and variable impedance actuators to optimally adapt interaction with dynamic environments and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burdet, E., Osu, R., Franklin, D.W., Milner, T.E., Kawato, M.: The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414(6862), 446–449 (2001)

    Article  Google Scholar 

  2. Franklin, D.W., Burdet, E., Osu, R., Kawato, M., Milner, T.E.: Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics. Experimental Brain Research 151(2), 145–157 (2003)

    Article  Google Scholar 

  3. Mussa-Ivaldi, F.A., Hogan, N., Bizzi, E.: Neural, mechanical, and geometric factors subserving arm posture in humans. Journal of Neuroscience 5(10), 2732–2743 (1985)

    Google Scholar 

  4. Shadmehr, R., Mussa-Ivaldi, F.A.: Adaptive representation of dynamics during learning of a motor task. Journal of Neuroscience 14(5), 3208–3224 (1994)

    Google Scholar 

  5. Chib, V.S., Patton, J.L., Lynch, K.M., Mussa-Ivaldi, F.A.: Haptic identification of surfaces as fields of force. Journal of Neurophysiology 95(2), 1068–1077 (2006)

    Article  Google Scholar 

  6. Ganesh, G., Haruno, H., Kawato, M., Burdet, E.: Motor memory and local minimization of error and effort, not global optimization, determine motor behavior. Journal of Neurophysiology 104, 382–390 (2010)

    Article  Google Scholar 

  7. Won, J., Hogan, N.: Stability properties of human reaching movements. Experimental Brain Research 107(1), 125–136 (1995)

    Article  Google Scholar 

  8. Kirsch, R.F., Boskov, D., Rymer, W.Z., Center, R.E., Center, M.H.M., Cleveland, O.H.: Muscle stiffness during transient and continuous movements of catmuscle: perturbation characteristics and physiological relevance. IEEE Transactions on Biomedical Engineering 41(8), 758–770 (1994)

    Article  Google Scholar 

  9. Gomi, H., Osu, R.: Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments. Journal of Neuroscience 18(21), 8965–8978 (1998)

    Google Scholar 

  10. Perreault, E.J., Kirsch, R.F., Crago, P.: Multijoint dynamics and postural stability of the human arm. Experimental Brain Research 157(4), 507–517 (2004)

    Article  Google Scholar 

  11. Milner, T.E., Cloutier, C.: Compensation for mechanically unstable loading in voluntary wrist movement. Experimental Brain Research 94(3), 522–532 (1993)

    Article  Google Scholar 

  12. Gomi, H., Kawato, M.: Equilibrium-point control hypothesis examined by measured arm-stiffness during multi-joint movement. Science 272, 117–120 (1996)

    Article  Google Scholar 

  13. Jacks, A., Prochazka, A., Trend, P.S.: Instability in human forearm movements studied with feed-back-controlled electrical stimulation of muscles.. The Journal of Physiology 402(1), 443–461 (1988)

    Google Scholar 

  14. Kawato, M., Furukawa, K., Suzuki, R.: A hierarchical neuralnetwork model for control and learning of voluntary movement. Biology Cybernetics 5(8), 169–185 (1987)

    Article  Google Scholar 

  15. Burdet, E.: Algorithms of human motor control and their implementation in robotics. PhD thesis, ETH-Zurich, Switzerland (1996)

    Google Scholar 

  16. Sanner, R., Kosh, M.: A mathematical model of the adaptive control of human arm movements. Biology Cybernetics 80(5), 369–382 (1999)

    Article  MATH  Google Scholar 

  17. Rancourt, D., Hogan, N.: Stability in force-production tasks. Journal of Motor Behavior 33(2), 193–204 (2001)

    Article  Google Scholar 

  18. Franklin, D.W., Osu, R., Burdet, E., Kawato, M., Milner, T.E.: Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model. Journal of Neurophysiology 90(5), 3270–3282 (2003)

    Article  Google Scholar 

  19. Franklin, D.W., Liaw, G., Milner, T.E., Osu, R., Burdet, E., Kawato, M.: Endpoint stiffness of the arm is directionally tuned to instability in the environment. Journal of Neuroscience 27(29), 7705–7716 (2007)

    Article  Google Scholar 

  20. Franklin, D.W., Burdet, E., Tee, K.P., Osu, R., Chew, C.M., Milner, T.E., Kawato, M.: CNS learns stable, accurate, and efficient movements using a simple algorithm. Journal of Neuroscience 28(44), 11165–11173 (2008)

    Article  Google Scholar 

  21. Burdet, E., Tee, K.P., Mareels, I., Milner, T.E., Chew, C., Franklin, D.W., Osu, R., Kawato, M.: Stability and motor adaptation in human arm movements. Biological Cybernetics 94(1), 20–32 (2006)

    Article  MATH  Google Scholar 

  22. Tee, K.P., Franklin, D.W., Kawato, M., Milner, T.E., Burdet, E.: Concurrent adaptation of force and impedance in the redundant muscle system. Biological Cybernetics 102(1), 31–44 (2010)

    Article  MATH  Google Scholar 

  23. Ganesh, G., Albu-Schäffer, A., Haruno, M., Kawato, M., Burdet, E.: Biomimetic motor behavior for simultaneous adaptation of force, impedance and trajectory in interaction tasks. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2705–2711 (2010)

    Google Scholar 

  24. Hogan, N.: Impedance control: an approach to manipulation-Part I: Theory; Part II: Implementation; Part III: Applications. Transaction ASME J. Dynamic Systems, Measurement and Control 107(1), 1–24 (1985)

    Article  MATH  Google Scholar 

  25. Yang, C., Burdet, E.: A computational robotic model of human motor sensor reference. In: IEEE International Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2011)

    Google Scholar 

  26. Yang, C., Ganesh, G., Albu-Schaeffer, A., Burdet, E.: Human like adaptation of force and impedance in stable and unstable tasks. IEEE Transactions on Robotics 27(5), 918–930 (2011)

    Article  Google Scholar 

  27. Osu, R., Burdet, E., Franklin, D., Milner, T., Kawato, M.: Different mechanisms involved in adaptation to stable and unstable dynamics. Journal of Neurophysiology 90(5), 3255 (2003)

    Article  Google Scholar 

  28. Ganesh, G., Melendez-Calderon, A., Haruno, M., Kawato, M., Burdet, E.: Transitions between reciprocal activation and co-contraction during posture control (submitted, 2012)

    Google Scholar 

  29. Ganesh, G., Jarasse, N., Haddadin, S., Albu-Schaeffer, A., Burdet, E.: A versatile biomimetic controller for contact tooling and haptic exploration. In: Proceedings of the IEEE International Conference on Robotics and Automation (2012)

    Google Scholar 

  30. Kadiallah, A., Franklin, D., Burdet, E.: Generalisation in adaptation to stable and unstable dynamics (submitted, 2012)

    Google Scholar 

  31. Rocon, E., Ruiz, A.F., Manto, M., Moreno, J.C., Belda-Lois, J.M., Pons, J.L.: Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Transactions on Neural System and Rehabilitation 15(3), 367–378 (2007)

    Article  Google Scholar 

  32. Popovic, L., Malesevic, N., Igor, P., Popovic, M.: Closed-loop tremor attenuation with Functional Electrical Stimulation. In: XVIII Cong. Intern. Soc. Electrophys. Kines, Tremor. management session (2010)

    Google Scholar 

  33. Balasubramaniam, S., Klein, J., Burdet, E.: Robot-assisted rehabilitation of hand function. Current Opinion in Neurology 23(6), 661–670 (2010)

    Article  Google Scholar 

  34. Hogan, N., Krebs, H.I., Rohrer, B., Palazzolo, J., Dipietro, L., Fasoli, S.E., Stein, J., Hughes, R., Frontera, W., Lynch, D., Volpe, B.T.: Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. Journal of Rehabilitation Research and Development 43(5), 605–618 (2006)

    Article  Google Scholar 

  35. Kahn, L., Lum, P.S., Rymer, W.Z., Reinkensmeyer, D.J.: Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does? Journal of Rehabilitation Research and Development 43(5), 619–630 (2006)

    Article  Google Scholar 

  36. Fasoli, S., Krebs, H., Hogan, N.: Robotic technology and stroke rehabilitation: translating research into practice. Topics in Stroke Rehabilitation 11(4), 11–19 (2004)

    Article  Google Scholar 

  37. Wolbrecht, E.T., Chan, V., Reinkensmeyer, D.J., Bobrow, J.E.: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 16(3), 286–297 (2008)

    Article  Google Scholar 

  38. Yeong, C.F., Melendez, A., Burdet, E., Baker, K., Playford, E.: Internal models in the cerebellum. In: Proceedings of IEEE International Conference on Cybernetics and Intelligent Systems Robotics, Automation and Mechatronics, CIS-RAM (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Burdet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Burdet, E., Ganesh, G., Yang, C., Albu-Schäffer, A. (2014). Interaction Force, Impedance and Trajectory Adaptation: By Humans, for Robots. In: Khatib, O., Kumar, V., Sukhatme, G. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28572-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28572-1_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28571-4

  • Online ISBN: 978-3-642-28572-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics