Skip to main content

Alleviating the Influence of Weak Data Asymmetries on Granger-Causal Analyses

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7191))

Abstract

We introduce the concepts of weak and strong asymmetries in multivariate time series in the context of causal modeling. Weak asymmetries are by definition differences in univariate properties of the data, which are not necessarily related to causal relationships between time series. Nevertheless, they might still mislead (in particular Granger-) causal analyses. We propose two general strategies to overcome the negative influence of weak asymmetries in causal modeling. One is to assess the confidence of causal predictions using the antisymmetry-symmetry ratio, while the other one is based on comparing the result of a causal analysis to that of an equivalent analysis of time-reversed data. We demonstrate that Granger Causality applied to the SiSEC challenge on causal analysis of simulated EEG data greatly benefits from our suggestions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969)

    Article  Google Scholar 

  2. Haufe, S.: Towards EEG source connectivity analysis. PhD thesis, TU Berlin (2011)

    Google Scholar 

  3. Kamiński, M., Ding, M., Truccolo, W.A., Bressler, S.L.: Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol. Cybern. 85, 145–157 (2001)

    Article  MATH  Google Scholar 

  4. Nolte, G., Meinecke, F.C., Ziehe, A., Müller, K.-R.: Identifying interactions in mixed and noisy complex systems. Phys. Rev. E 73, 051913 (2006)

    Article  Google Scholar 

  5. Nolte, G., Ziehe, A., Nikulin, V.V., Schlögl, A., Krämer, N., Brismar, T., Müller, K.R.: Robustly estimating the flow direction of information in complex physical systems. Phys. Rev. Lett. 100, 234101 (2008)

    Article  Google Scholar 

  6. Nolte, G., Ziehe, A., Krämer, N., Popescu, F., Müller, K.-R.: Comparison of Granger causality and phase slope index. JMLR W&CP 6, 267–276 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fabian Theis Andrzej Cichocki Arie Yeredor Michael Zibulevsky

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haufe, S., Nikulin, V.V., Nolte, G. (2012). Alleviating the Influence of Weak Data Asymmetries on Granger-Causal Analyses. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28551-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28550-9

  • Online ISBN: 978-3-642-28551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics