Skip to main content

Information in Polarisation Imaging

  • Chapter
  • First Online:
Informational Limits in Optical Polarimetry and Vectorial Imaging

Part of the book series: Springer Theses ((Springer Theses))

  • 728 Accesses

Abstract

Information in both the natural and man-made world is frequently not spatially confined to a single point. Whilst, for example, studying the autofluorescence from a single molecule in a cell provides information with regards to that molecule, nothing is learnt about the processes and structure in the whole cell. To do so requires information to be collected from multiple locations. Such is the reason for the prevalence and success of imaging systems. In an optical context, a CCD can be used to record the intensity incident upon each pixel for instance. If located in the image plane of an optical microscope or telescope, information with regards to the object can then be extracted from the intensity readings.

Observations always involve theory.Edwin Hubble

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Paul Abbott and Peter Falloon from the Physics Department of the University of Western Australia kindly provided the Mathematica code necessary to compute Slepian’s generalised spheroidal functions, for which the author is particularly grateful.

  2. 2.

    Mathematically the same inversion procedure can be followed using integration over an infinite plane in the focal region, however here the mathematics is demonstrated using a restricted domain since such integrations are more suitable for numerical routines.

  3. 3.

    This definition of the condition number differs from that used in Chap. 5, however is more appropriate to an eigenfunction analysis.

  4. 4.

    The factor of \(i\) in Eq. (6.26) represents a global phase and can safely be ignored.

  5. 5.

    A technique, developed by the author and colleagues, capable of measuring the longitudinal orientation is presented in Chap. 8.

  6. 6.

    Whilst Eq. (6.31) strictly only compares the shape of the desired and optimised intensity profiles with no regard to the phase distribution, this is of little consequence to the results presented since only the intensity profile is deemed of any importance here.

  7. 7.

    Measurements from different positions can be stacked into a vector format and Eq. (6.35) used, however the assumption that the noise at each measurement position is independent allows simplification to Eq. (6.37), such that the dimensions of \(\mathbf{ D} \) are greatly reduced.

  8. 8.

    The Cauchy-Schwarz inequality reads

    $$\begin{aligned} \left|\int \int f({\varvec{\rho }})g({\varvec{\rho }})d {\varvec{\rho }}\right|^2 \le \int \int |f({\varvec{\rho }})|^2 d {\varvec{\rho }}\int \int |g({\varvec{\rho }})|^2 d {\varvec{\rho }}, \nonumber \end{aligned}$$

    which, with the substitutions

    $$\begin{aligned} f({\varvec{\rho }}) = \frac{1}{\sqrt{D_{\text{ im}}({\varvec{\rho }},\Omega _{\text{ ob}})}} \frac{\partial {D_{\text{ im}}({\varvec{\rho }},\Omega _{\text{ ob}})}}{\partial {w}} \,\quad \text{ and}\quad g({\varvec{\rho }}) = \sqrt{D_{\text{ im}}({\varvec{\rho }},\Omega _{\text{ ob}})},\nonumber \end{aligned}$$

    yields

    $$\begin{aligned} \left|\int \int _{\Omega _{\text{ im}}}\!\frac{\partial {D_{\text{ im}}({\varvec{\rho }},\Omega _{\text{ ob}})}}{\partial {w}}d{\varvec{\rho }}\right|^2 \le \int \int _{\Omega _{\text{ im}}} \frac{1}{D_{\text{ im}}({\varvec{\rho }},\Omega _{\text{ ob}})}\left|\frac{\partial {D_{\text{ im}}({\varvec{\rho }},\Omega _{\text{ ob}})}}{\partial {w}}\right|^2 d{\varvec{\rho }}\,\,\int \int _{\Omega _{\text{ im}}}\!D_{\text{ im}}({\varvec{\rho }},\Omega _{\text{ ob}})d{\varvec{\rho }}\nonumber \end{aligned}$$

    thus leading to Eq. (6.40).

  9. 9.

    For magnetic dipoles the far field distribution takes the form \((\mathbf{ s} _1 \times \mathbf{ p} ) \exp (ik\rho _1)/\rho _1\).

  10. 10.

    Two measurements are required such that the resulting set of linear equations are well conditioned (neglecting an ambiguity as to which quadrant the dipole lies in), when noise is absent.

  11. 11.

    Whilst the notation \(J_\gamma ^{\max }\) will be retained, it should be observed that when \(S_0\) is known a priori, the maximum Fisher information is \(2J_\gamma ^{\max }\).

  12. 12.

    The \(K\) integrals of Eqs. (6.44a–e) accommodate a defocus of the detector in the image plane. If however the dipole suffers an axial shift, \(z_{\text{ dp}}\) the exponential term \(\exp [ikz_2\cos \theta _2]\) must be modified to \(\exp [ik(z_2\cos \theta _2 - z_{\text{ dp}}\cos \theta _1)]\) (see [33]).

  13. 13.

    Malus’ law states that the intensity transmitted through a polariser with transmission axis at \(\vartheta \) when illuminated with light, linearly polarised at an angle \(\gamma \), is given by \(D\propto \cos ^2(\vartheta -\gamma )\).

  14. 14.

    The main computational restriction lies in the inversion of the associated \(14,112 \times 14,112\) FIM.

References

  1. G.P. Agrawal, D.N. Pattanayak, Gaussian beam propagation beyond the paraxial approximation. J. Opt. Soc. Am. 69, 575–578 (1979)

    Article  ADS  Google Scholar 

  2. G. Arfken, Mathematical Methods for Physicists, 3rd edn. (Elsevier Academic Press, New York, 1985)

    Google Scholar 

  3. Z. Bomzon, G. Biener, V. Kleiner, E. Hasman, Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt. Lett. 27, 285–287 (2002)

    Article  ADS  Google Scholar 

  4. M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1980)

    Google Scholar 

  5. J.J.M. Braat, P. Dirksen, A.J.E.M. Janssen, A.S. van de Nes, Extended Nijboer-Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system. J. Opt. Soc. Am. A 20, 2281–2292 (2003)

    Article  ADS  Google Scholar 

  6. U. Brand, G. Hester, J. Grochmalicki, R. Pike, Super-resolution in optical data storage. J. Opt. A Pure Appl. Opt. 1, 794–800 (1999)

    Article  ADS  Google Scholar 

  7. M. Brookes, The matrix reference manual (2005). http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html

  8. D.R. Chowdhury, K. Bhattacharya, S. Sanyal, A.K. Chakraborty, Performance of a polarization-masked lens aperture in the presence of spherical aberration. J. Opt. A Pure Appl. Opt. 4, 98–104 (2002)

    Article  ADS  Google Scholar 

  9. T. di Francia, Super-gain antennas and optical resolving power. Nuovo Cimento 9, 426–438 (1952)

    Article  Google Scholar 

  10. E.R. Dowski Jr., W.T. Cathey, Extended depth of field through wave-front coding. Appl. Opt. 34, 1859–1866 (1995)

    Google Scholar 

  11. M. Endo, Pattern formation method and exposure system. Patent 7,094,521, 2006

    Google Scholar 

  12. P.E. Falloon, Hybrid computation of the spheroidal harmonics and application to the generalized hydrogen molecular ion problem, Ph.D. thesis, 2001

    Google Scholar 

  13. P.B. Fellgett, E.H. Linfoot, On the assessment of optical images. Philos. Trans. R. Soc. Lond. A 247, 369–407 (1955)

    Article  MathSciNet  ADS  Google Scholar 

  14. M.R. Foreman, S.S. Sherif, P.R.T. Munro, P. Török, Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region. Opt. Express 16, 4901–4917 (2008)

    Article  ADS  Google Scholar 

  15. B.R. Frieden, Evaluation, Design and Extrapolation Methods for Optical Signals, Based on the Prolate Functions. Progress in Optics IX (North-Holland Publishing Co., Amsterdam, 1971)

    Google Scholar 

  16. B.R. Frieden, Physics from Fisher Information: A Unification (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  17. D. Gabor, A new microscopic principle. Nature (London) 161, 777–778 (1948)

    Article  ADS  Google Scholar 

  18. J.D. Gorman, A.O. Hero, Lower bounds for parametric estimation with constraints. IEEE Trans. Inform. Theory 26, 1285–1301 (1990)

    Article  MathSciNet  Google Scholar 

  19. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Elsevier Academic Press, New York, 1980)

    Google Scholar 

  20. T. Ha, T. Enderle, D.S. Chemla, P.R. Selvin, S. Weiss, Single molecule dynamics studied by polarization modulation. Phys. Rev. Lett. 77, 3979–3982 (1996)

    Article  ADS  Google Scholar 

  21. P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion (SIAM, Philadelphia, 1997)

    MATH  Google Scholar 

  22. Z.S. Hegedus, V. Sarafis, Superresolving filters in confocally scanned imaging systems. J. Opt. Soc. Am. A 3, 1892–1896 (1986)

    Article  ADS  Google Scholar 

  23. J.C. Heurtley, Hyperspheroidal functions-optical resonators with circular mirrors, inProceedings of Symposium on Quasi-Optics, ed. by J. Fox (Polytechnic Press, New York, 1964), pp.367–371

    Google Scholar 

  24. P.D. Higdon, P. Török, T. Wilson, Imaging properties of high aperture multiphoton fluorescence scanning microscopes. J. Micros. 193, 127–141 (1999)

    Article  Google Scholar 

  25. S. Inoué, Exploring Living Cells and Molecular Dynamics with Polarized Light Microscopy, 1st edn. In Török and Kao [57], 2007, ch. 1.

    Google Scholar 

  26. R. Kant, An analytical solution of vector diffraction for focusing optical systems with Seidel aberrations. J. Mod. Opt. 40, 2293–2310 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  27. B. Karczewski, E. Wolf, Comparison of three theories of electromagnetic diffraction at an aperture. J. Opt. Soc. Am 56, 1207–1219 (1966)

    Article  ADS  Google Scholar 

  28. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. D. Lara, C. Paterson, Stokes polarimeter optimization in the presence of shot and Gaussian noise. Opt. Express 17, 21240–21249 (2009)

    Article  Google Scholar 

  30. W. Latham, M. Tilton, Calculation of prolate functions for optical analysis. Appl. Opt. 26, 2653–2658 (1987)

    Article  ADS  Google Scholar 

  31. W.H. Lee, Computer-Generated Holograms: Techniques and Applications, Progress in Optics XVI. (North-Holland Publishing Co., Amsterdam, 1978)

    Google Scholar 

  32. C.W. McCutcheon, Generalised aperture and the three-dimensional diffraction image. J. Opt. Soc. Am. 54, 240–244 (1964)

    Article  ADS  Google Scholar 

  33. P.R.T. Munro, Application of numerical methods to high numerical aperture imaging. Ph.D. thesis, 2006

    Google Scholar 

  34. Y. Mushiake, K. Matsumura, N. Nakajima, Generation of radially polarized optical beam mode by laser oscillation. Proc. IEEE 60, 1107–1109 (1972)

    Article  Google Scholar 

  35. M.A.A. Neil, F. Massoumian, R. \({\rm Ju{\breve{s}}kaitis}\), T.Wilson, Method for the generation of arbitrary complex vector wave fronts. Opt. Lett. 27, 1929–1931 (1990)

    Google Scholar 

  36. M.A.A. Neil, T. Wilson, R. \({\rm Ju{\breve{s}}kaitis}\), A wavefront generator for complex pupil function synthesis and point spread function engineering. J. Micros. 197, 219–223 (2000)

    Google Scholar 

  37. R.J. Ober, S. Ram, E.S. Ward, Localization accuracy in single-molecule microscopy. Biophys. J. 86(2), 1185–1200 (2004)

    Article  ADS  Google Scholar 

  38. J. Ojeda-Castañeda, L.R. Berriel-Valdos, E. Montes, Spatial filter for increasing the depth of focus. Opt. Lett. 10, 520–522 (1987)

    Article  ADS  Google Scholar 

  39. R. Oldenbourg, A new view on polarization microscopy. Nature 381, 811–812 (1996)

    Article  ADS  Google Scholar 

  40. R. Oldenbourg, G. Mei, New polarized light microscope with precision universal compensator. J. Micros. 180, 140–147 (1995)

    Article  Google Scholar 

  41. R. Oldenbourg, P. Török, Point-spread functions of a polarizing microscope equipped with high-numerical-aperture lenses. Appl. Opt. 39, 6325–6331 (2000)

    Article  ADS  Google Scholar 

  42. R. Pike, D. Chana, P. Neocleous, S. Jiang, Superresolution in scanning optical systems, 1st edn. In Török and Kao [57], 2007, Ch. 4.

    Google Scholar 

  43. T.C. Poon, M. Motamedi, Optical/digital incoherent image processing for extended depth of field. Appl. Opt. 26, 4612–4615 (1987)

    Article  ADS  Google Scholar 

  44. S. Ram, E.S. Ward, R.J. Ober, Beyond Rayleigh’s criterion: A resolution measure with application to single-molecule microscopy. Proc. Natl Acad. Sci. USA 103, 4457–4462 (2006)

    Article  ADS  Google Scholar 

  45. B. Richards, E. Wolf, Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Trans. Opt. Inst. Pet. 253, 358–379 (1959)

    MATH  Google Scholar 

  46. A. Rohrbach, J. Huisken, E.H.K. Stelzer, Optical trapping of small particles, 1st edn. In Török and Kao [57], 2007, ch. 15.

    Google Scholar 

  47. C.J.R. Sheppard, A. Choudhury, Image formation in the scanning microscope. J. Mod. Opt. 24(10), 1051–1073 (1976)

    Google Scholar 

  48. C.J.R. Sheppard, P. Török, Efficient calculation of electromagnetic diffraction in optical systems using a multipole expansion. J. Mod. Opt. 44, 803–818 (1997)

    Article  ADS  Google Scholar 

  49. S.S. Sherif, W.T. Cathey, Depth of field control in incoherent hybrid imaging systems, 1st edn. In Török and Kao [57], 2007, ch. 5.

    Google Scholar 

  50. S.S. Sherif, M.R. Foreman, P. Török, Eigenfunction expansion of the electric fields in the focal region of a high numerical aperture focusing system. Opt. Express 16, 3397–3407 (2008)

    Article  ADS  Google Scholar 

  51. S.S. Sherif, P. Török, Pupil plane masks for super-resolution in high-numerical-aperture focusing. J. Mod. Opt. 51, 2007–2019 (2004)

    ADS  MATH  Google Scholar 

  52. S.S. Sherif, P. Török, Eigenfunction representation of the integrals of the Debye-Wolf diffraction formula. J. Mod. Opt. 52, 857–876 (2005)

    Article  ADS  MATH  Google Scholar 

  53. B. Sick, B. Hecht, L. Novotny, Orientational imaging of single molecules by annular illumination. Phys. Rev. Lett. 85, 4482–4485 (2000)

    Article  ADS  Google Scholar 

  54. D. Slepian, Prolate spheroidal wave functions, Fourier analysis and uncertainty IV Extensions to many dimensions; generalised prolate spheroidal functions. Bell System Tech. J. 43, 3009–3057 (1964)

    MathSciNet  MATH  Google Scholar 

  55. S.C. Tidwell, D.H. Ford, W.D. Kimura, Generating radially polarized beams interferometrically. Appl. Opt. 29, 2234–2239 (1990)

    Article  ADS  Google Scholar 

  56. P. Török, P.D. Higdon, T. Wilson, Theory for confocal and conventional microscopes imaging small dielectric scatterers. Opt. Commun. 45, 1681–1698 (1998)

    Google Scholar 

  57. P. Török, F.-J. Kao (eds.), Optical Imaging and Microscopy - Techniques and Advanced Systems, 1st edn. (Springer, New York, 2007)

    Google Scholar 

  58. P. Török, P. Varga, Electromagnetic diffraction of light focused through a stratified medium. Appl. Opt. 36, 2305–2312 (1997)

    Article  ADS  Google Scholar 

  59. K.C. Toussaint Jr., S. Park, J.E. Jureller, N.F. Scherer, Generation of optical vector beams with a diffractive optical element interferometer. Opt. Lett. 30, 2846–2848 (2005)

    Article  ADS  Google Scholar 

  60. H.C. van de Hulst, Light Scattering by Small Particles (Dover Publications, Dover, 1981)

    Google Scholar 

  61. A.S. van de Nes, Rigorous electromagnetic field calculations for advanced optical systems. Ph.D. Thesis, 2005

    Google Scholar 

  62. G.N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  63. W.T. Welford, Use of annular apertures to increase focal depth. J. Opt. Soc. Am. 50, 749–753 (1960)

    Article  ADS  Google Scholar 

  64. W.T. Welford, On the relationship between the modes of image formation in scanning microscopy and conventional microscopy. J. Micros. 96, 105–107 (1972)

    Article  Google Scholar 

  65. T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, London, 1984)

    Google Scholar 

  66. E. Wolf, Electromagnetic diffraction in optical systems I An integral representation of the image field. Proc. Roy. Soc. Lond. A 253, 349–357 (1959)

    Article  ADS  MATH  Google Scholar 

  67. K.S. Youngworth, T.G. Brown, Focusing of high numerical aperture cylindrical vector beams. Opt. Express 7, 77–87 (2000)

    Article  ADS  Google Scholar 

  68. S.-S. Yu, B.J. Lin, A. Yen, C.-M. Ke, J. Huang, B.-C. Ho, C.-K. Chen, T.-S. Gau, H.-C. Hsieh, Y.-C. Ku, Thin-film optimization strategy in high numerical aperture optical lithography I—Principles. J. Microlith. Microfab. Microsyst. 4, 043003 (2005)

    Article  Google Scholar 

  69. T. Zolezzi, Well-Posedness Criteria in Optimization with Application to the Calculus of Variations. Nonlinear Analysis: Theory, Methods and Applications, vol. 25 (Elsevier Science Ltd., Oxford, 1995), pp. 437–453

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Foreman .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Foreman, M.R. (2012). Information in Polarisation Imaging. In: Informational Limits in Optical Polarimetry and Vectorial Imaging. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28528-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28528-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28527-1

  • Online ISBN: 978-3-642-28528-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics