Skip to main content

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Group 17 of the periodic table of the elements (see Table 1.1) consists of the so called halogen elements fluorine, chlorine, bromine, iodine, astatine and the recently discovered element 117 (Organessian et al. in Phys Rev Lett 104:142502, 2010), although it is not yet known if this element behaves similar to the other group 17 elements due to possible relativistic effects (see e.g. Pyykkö 2011b). Group 17 elements are characterised by an outer electron shell which contains seven electrons, so that only one electron needs to be added to give it a full noble gas configuration. This property makes that the dominant oxidation state, especially for the lighter elements of this group, is the -I oxidation state and they predominantly form ionogenic compounds. In the earth’s surface reservoir chlorine and bromine are most commonly found in aqueous solution in the oceans, as most of their salts are readily soluble in water, and in evaporite deposits while fluorine is most common in some fluoride rich minerals such as fluorite (CaF2), fluorapatite (Ca5(PO4)3F), and cryolite (Na3AlF6) as the alkaline earth fluorides (e.g. CaF2, MgF2) have a low solubility and precipitate out of waters with significant alkaline earth concentrations. Iodine has a relatively low concentration in seawater as it is efficiently removed from it by certain brown algae which are able to heavily concentrate iodine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allegre C, Manhès G, Lewin É (2001) Chemical composition of the Earth and the volatility control on planetary genetics. Earth Planet Sci Lett 185:49–69

    Google Scholar 

  • Ampère AM (1816) D’une classification naturelle pour les corps simples. Annal Chim Phys 2:6–21

    Google Scholar 

  • Anders E, Ebihara M (1982) Solar-system abundances of the elements. Geochim Cosmochim Acta 46:2363–2380

    Google Scholar 

  • Balard AJ (1826) Sur une substance particulière contenue dans l’eau de la mer. Annal Chim Phys 2me series 32:337–381

    Google Scholar 

  • Berglund M, Wieser ME (2011) Isotopic compositions of the elements 2009 (IUPAC Technical Report). Pure Appl Chem 83:397–410

    Google Scholar 

  • Boeke HE (1908) Über das Krystallisationsschema der Chloride, Bromide, Jodide von Natrium, Kalium und Magnesium, sowie über das Vorkommen des Broms und das Fehlen von Jod in den Kalisalzlagerstätten. Z Kristallogr 45:346–391

    Google Scholar 

  • Bonifacie M, Jendrzejewski N, Agrinier P, Humler E, Coleman M, Javoy M (2008) The chlorine isotope composition of earth’s mantle. Science 319:1518–1520

    Google Scholar 

  • Braitsch O (1962) Entstehung und Stoffbestand der Salzlagerstätten. Springer, Berlin

    Google Scholar 

  • Braitsch O, Hermann AG (1963) Zur Geochemie des Broms in salinaren Sedimenten: Teil I: Experimentelle Bestimmung der Br-Verteilung in verschiedenen natürlichen Salzsystemen. Geochim Cosmochim Acta 27:361–391

    Google Scholar 

  • Cameron AGW (1970) Abundances of the elements in the solar system. Space Sci Rev 15:121–146

    Google Scholar 

  • Champion J, Alliot C, Renault E, Mokili BM, Chérel M, Galland N, Montavon G (2010) Astatine standard redox potentials and speciation in acidic medium. J Phys Chem A 114:576–582

    Google Scholar 

  • Corson DR, MacKenzie KR, Segrè E (1940) Artificially radioactive element 85. Phys Rev 58:672–678

    Google Scholar 

  • Courtois B (1813) Découverte d’une substance nouvelle dans le Vareck. Annal Chim 88:304–310

    Google Scholar 

  • Davy H (1811) On a combination of oxymuriatic gas and oxygene gas. Phil Trans R Soc Lond 101:155–162

    Google Scholar 

  • Davy H (1813) Sur la nouvelle substance découverte par M. Courtois, dans le sel de Vareck. Annal Chemie 88:322–329

    Google Scholar 

  • Davy H (1814a) Some experiments and observations on a new substance which becomes a violet coloured gas by heat. Phil Trans R Soc Lond 104:74–93

    Google Scholar 

  • Davy H (1814b) Mémoire sur la nature de l’acide fluorique, lu á la Societé Royale de Londres, le 8 julliet 1814, et Annal Chim 88:271

    Google Scholar 

  • Elert G (1998–2012) The physics hypertextbook, atomic models. http://physics.info/atomic-models/. Accessed 12 Aug 2014

  • Feynman RP (1948) Relativistic cut-off for quantum electrodynamics. Phys Rev 74:1430–1438

    Google Scholar 

  • Frémy E (1850) Recherches sur les fluorures. Ann Chim Phys 2me Serie, t. LXVII, p 5

    Google Scholar 

  • Fricke B, Waber JT (1971) Theoretical predictions of the chemistry of superheavy elements. Actinides Rev 1:433–485

    Google Scholar 

  • Fricke B, Greiner W, Waber JT (1971) The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements. Theoret Chim Acta 21:235–260 (Berlin)

    Google Scholar 

  • Garrison D, Hamlin S, Bogard D (2000) Chlorine abundances in meteorites. Meteor Planet Sci 35:419–429

    Google Scholar 

  • Gast PW (1972) The chemical composition of the earth, the moon and chondritic meteorites. In: Nature of the solid earth; edt. EC Robertson. McGraw-Hill, New York pp 19-40

    Google Scholar 

  • Gay-Lussac J (1813a) Sur un nouvel acide formé avec la substance décourverte par M. Courtois. Annal Chim 88:311–318

    Google Scholar 

  • Gay-Lussac J (1813b) Sur la combination de l’iode avec d’oxigène. Annal Chimie 88:319–321

    Google Scholar 

  • Gay-Lussac J (1814) Mémoire sur l’iode. Annal Chim 91:5–160

    Google Scholar 

  • Gay-Lussac J, Thénard L (1809) De la nature et des propriétés de l’acide muriatique et de l’acide muriatique oxigéné. Mém Phys Chim Société d’Arcueil 2:339–358

    Google Scholar 

  • Goldschmidt VM (1937) The principles of distribution of chemical elements in minerals and rocks. J Chem Soc 1937:655–673

    Google Scholar 

  • Graedel TE, Keene WC (1996) The budget and cycle of Earthś natural chlorine. Pure Appl Chem 68:1689–1697

    Google Scholar 

  • Harben PW, Kužvart M (1996) Industrial minerals—a global geology. Industrial Minerals Information Ltd., Metal Bulletin PLC, London 462 pp

    Google Scholar 

  • Hay WW, Migdisov A, Balukhovsky AN, Wold CN, Flögel S, Söding E (2006) Evaporites and the salinity of the ocean during the phanerozoic: implications for climate, ocean circulation and life. Pal Pal Pal 240:3–46

    Google Scholar 

  • Ito E, Harris DM, Anderson AT Jr (1983) Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim Cosmochim Acta 47:1613–1624

    Google Scholar 

  • Jarrard RD (2003) Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem Geophys Geosystems 4. doi:10.1029/2002GC000392

    Google Scholar 

  • Karlik B, Bernert T (1943a) Eine neue natürliche α-Strahlung. Naturwissenschaften 31:298–299

    Google Scholar 

  • Karlik B, Bernert T (1943b) Das Element 85 in den natürlichen Zerfallsreihen. Z Physik A 123:51–72

    Google Scholar 

  • Kaufmann RS (1984) Chlorine in groundwater: Stable isotope distribution. Ph.D. thesis, University of Arizona, Tucson, Ariz

    Google Scholar 

  • Khazan A (2007) Effect from hyperbolic law in periodic table of elements. Prog Phys 2:83–86

    Google Scholar 

  • Khuyagbaatar J, Yakushev A, Düllmann ChE, Ackermann D, Andersson LL, Asai M, Block M, Boll RA, Brand H, Cox DM, Dasgupta M, Derkx X, Di Nitto A, Eberhardt K, Even J, Evers M, Fahlander C, Forsberg U, Gates JM, Gharibyan N, Golubev P, Gregorich KE, Hamilton JH, Hartmann W, Herzberg RD, Heßberger FP, Hinde DJ, Hoffmann J, Hollinger R, Hübner A, Jäger E, Kindler B, Kratz JV, Krier J, Kurz N, Laatiaoui M, Lahiri S, Lang R, Lommel B, Maiti M, Miernik K, Minami S, Mistry A, Mokry C, Nitsche H, Omtvedt JP, Pang GK, Papadakis P, Renisch D, Roberto J, Rudolph D, Runke J, Rykaczewski KP, Sarmiento LG, Schädel M, Schausten B, Semchenkov A, Shaughnessy DA, Steinegger P, Steiner J, Tereshatov EE, Thörle-Pospiech P, Tinschert K, Torres De Heidenreich T, Trautmann N, Türler A, Uusitalo J, Ward DE, Wegrzecki M, Wiehl N, Van Cleve SM, Yakusheva V (2014) 48Ca + 249Bk fusion reaction leading to element Z = 117: Long-lived α-decaying 270Db and discovery of 266Lr. Phys Rev Lett 112:172501

    Google Scholar 

  • Knauth LP (1998) Salinity history of the Earth’s early ocean. Nature 395:554−555

    Google Scholar 

  •  Knauth LP (2005) Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Pal Pal Pal 219:53–69

    Google Scholar 

  • Land LS (1995) The role of saline formation water in crustal cycling. Aquat Chem 1:137–145

    Google Scholar 

  • Layne GD, Kent AJR, Bach W (2009) δ37Cl systematics of a backarc spreading system: the Lau Basin. Geology 37:427–430

    Google Scholar 

  • Löwich C (1827) Über Brombereitung und eine auffallende Zersetzung des Aethers durch Chlor. Mag Pharmacie 21:31–36

    Google Scholar 

  • Löwich C (1828) Über einige Bromverbindungen und über Bromdarstellung. Ann Phys Chem 14:485–499

    Google Scholar 

  • Lyday PA (2005) Iodine and iodine compounds, in ullmann’s encyclopedia of industrial chemistry, Wiley-VCH, Weinheim, vol A14, pp 382–390

    Google Scholar 

  • Marggraf AS (1768) Observation concernant une volatilisation remarquable d’une partie de l’espèce de pierre, à laquelle on donne les noms de Flosse, Flusse, Flus-Spaht, et aussi celui d’hespéros; laquelle volatilisation a été effectuée au moyen des acides. Histoire de l’Académie Royale des Sciences et des Belles-Lettres de Berlin. 1768:1–11

    Google Scholar 

  • Mason B (1952) Principles of geochemistry. Wiley, New York

    Google Scholar 

  • McDonough WF (2000) The composition of the earth. In: Teisseyre R, Majewski E (eds) Earthquake thermodynamics and phase transformations in the earth’s interior

    Google Scholar 

  • Moissan H (1887) Recherges sur l’isolement du fluor. Annal Chim Phys 6me serie, t. XII, Gauthiers-Villars, Paris, 66 pp

    Google Scholar 

  • Nefedov VI, Trzhaskovskaya MB, Yarzhemskii VG (2006) Electronic configurations and the periodic table for superheavy elements. Dokl Phys Chem 408:149–151

    Google Scholar 

  • Organessian YUTS, Abdullin FSH, Bailey PD, Benker DE, Bennett ME, Dmitriev SN, Ezold JG, Hamilton JH, Henderson RA, Itkis MG, Lobanov YUV, Mezentsev AN, Moody KJ, Nelson SL, Polyakov AN, Porter CE, Ramayya AV, Riley FD, Roberto JB, Ryabinin MA, Rykaczewski KP, Sagaidak RN, Shaughnessy DA, Shirokovsky IV, Stoyer MA, Subbotin VG, Sudowe R, Sukhov AM, Tsyganov YuS, Utyonkov VK, Voinov AA, Vostokin GK, Wilk PA (2010) Synthesis of a new element with atomic number Z = 117. Phys Rev Lett 104:142502

    Google Scholar 

  • Pytkowicz RM, Kester DR (1971) Physical chemistry of sea water. Oceanogr Mar Biol A Rev 9:11–60

    Google Scholar 

  • Pyykkö P (2011a) A suggested periodic table up to Z ≤ 172, based on Dirac-Fock calculations on atoms and ions. Phys Chem Chem Phys 13:161–168

    Google Scholar 

  • Pyykkö P (2011b) Relativistic effects in chemistry: more common than you thought. Ann Rev Phys Chem 63:45–64

    Google Scholar 

  • Rahn KA (1976) Technical Report. University of Rhode Island

    Google Scholar 

  • Seaborg GT (1968) Elements beyond 100, present status and future prospects. Ann Rev Nucl Sci 18:53–152

    Google Scholar 

  • Scheele CW (1771) Undersökning om fluss-spat och dess syra. Kongl Vetenskaps Academiens Handlingar 32:120–137

    Google Scholar 

  • Scheele CW (1774) On Brun-sten eller Magnesia, och dess Egenskaper. Kongl Vetenskaps Academiens Handlingar 35:89–116

    Google Scholar 

  • Schilling JG, Unni CK, Bender ML (1978) Origin of chlorine and bromine in the oceans. Nature 273:631–636

    Google Scholar 

  • Sharp ZD, Barnes JD, Brearly AJ, Chaussidon M, Fisher TP, Kamenetsky VS (2007) Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446:1062–1065

    Google Scholar 

  • Sharp ZD, Mercer JA, Jones RH, Brearley AJ, Selverstone J, Bekker A, Stachel T (2013) The chlorine isotope composition of chondrites and Earth. Geochim Cosmochim Acta 107:189–204

    Google Scholar 

  • Stacy FD (1969) Physics of the earth, 3rd edn. Wiley Interscience, New York

    Google Scholar 

  • Suess H, Urey H (1956) Abundances of the Elements. Rev Mod Phys 28:53–74

    Google Scholar 

  • Turekian KK (1971) Geochemical distribution of elements. McGraw-Hill Encyclopedia of Science and Technology 4:627–630

    Google Scholar 

  • Weeks ME (1942) The discovery of the elements. XVIII. The halogen family. J Chem Ed 9:1915–1939

    Google Scholar 

  • Wieser ME, Holden N, Coplen TC, Böhlke JK, Berglund M, Brand WA, De Biévre P, Gröning M, Loss RD, Meija J, Hirata T, Prohaska T, Schoenberg R, O’Connor G, Walczyk T, Yoneda S, Zhu XK (2013) Atomic weights of the elements 2011 (IUPAC Technical Report). Pure Appl Chem 85:1047–1078

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Eggenkamp .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eggenkamp, H. (2014). The Halogen Elements. In: The Geochemistry of Stable Chlorine and Bromine Isotopes. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28506-6_1

Download citation

Publish with us

Policies and ethics