Skip to main content

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 145))

  • 1398 Accesses

Abstract

To advocate the development of new robust and reliable controllers, it has been defined a benchmark problem, where robust controllers are required for controlling a 6-Degree of Freedom (6-DOF) nonlinear F16 aircraft in auto-landing phase undergoing actuator failures. This paper attempt to provide a solution by developing a robust Neural Network (Neuro) aided H2 controller. Simulation results show that the fault tolerant performance of the proposed Neuro-aided H2 controller is better than H2 controller under actuator failure condition, both the number of hidden neurons and the time of on-line learning are small enough to be used in engineer problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pallett, E.H.J., Coyle, S.: Automatic Flight Control. Blackwell Scientific (1993)

    Google Scholar 

  2. Donald, M.: Automatic Flight Control Systems. Prentice-Hall (1990)

    Google Scholar 

  3. Bole, M., Svoboda, J.: Design of a Reconfigurable Automated Landing System for VTOL Unmanned Air Vehicles. In: Proceedings of the IEEE 2000 National Aerospace and Electronics Conference, NAECON 2000, pp. 801–806 (2000)

    Google Scholar 

  4. Jorgensen, C.C., Scheley, C.: Neural Network Baseline Problem for Control of Aircraft Flare and Touchdown. In: Neural Networks for Control, pp. 402–425. MIT Press, Cambridge (1990)

    Google Scholar 

  5. Calise, A.J.: Neural Networks in Non-Linear Aircraft Flight Control. IEEE Aerospace and Electronic Systems Magazine, 5–19 (July 1996)

    Google Scholar 

  6. Steinberg, M., Di Giralamo, R.: Applying Neural Network Technology to Future Generation Military Flight Control Systems. In: International Joint Conference on Neural Networks, Seattle, WA (1991)

    Google Scholar 

  7. Iiguni, Y., Akiyoshi, H., Adachi, N.: An Intelligent Landing System Based On a Human Skill Model. IEEE Trans. on Aerospace and Electronic System 34(3), 877–882 (1998)

    Article  Google Scholar 

  8. Napolitano, M.R., Kincheloe, M.: On-Line Learning Neural-Network Controllers for Autopilot Systems. AIAA Journal of Guidance, Control and Dynamics 33(6), 1008–1015 (1995)

    Article  Google Scholar 

  9. Lu, Y., Sundararajan, N., Saratchandran, P.: Performance Evolution of a Sequential Minimal Radial Basis function(RBF) Neural Network Learning Algorithm. IEEE Tran. on Neural Network 9(2), 308–318 (1998)

    Article  Google Scholar 

  10. Cao, Y.Y., Lin, Z.L., Ward, D.G.: Hinf Antiwindup Design for Linear Systems Subject to Input Saturation. Journal of Guidance, Control, and Dynamics 25(3), 455–463 (2002)

    Article  Google Scholar 

  11. Naidu, D.S., Banda, S.S., Buffington, J.L.: Unified Approach To H2 and Hinf Optimal Control of a Hypersonic Vehicle. In: Proc. of the American Control Conference, pp. 2737–2741, San Diego, California (June 1999)

    Google Scholar 

  12. Hyde, R.A., Glover, K.: The Application of Scheduled Hinf Controllers to a VSTOL Aircraft. IEEE Trans. on Automatic Control 38(7), 402–425 (1993)

    Article  MathSciNet  Google Scholar 

  13. Nguyen, L.T., Marilyn, E.O., William, P.G., Kemper, S.K., Philip, W.B., Deal, P.L.: Simulator study of stall/post stall characteristics of a fighter airplane with relaxed longitudinal static stability. NASA Technical Paper 1538, USA (1979)

    Google Scholar 

  14. Li, Y., Wang, Z.F., Sundararajan, N.: Robust Neural Controller Design for Aircraft Auto Landing Under Failures., DSOCL01144, Final Report (December 2003)

    Google Scholar 

  15. Che, J., Chen, D.G.: Automatic Landing Control using Hinf Control and Stable Inversion. In: Orlando, F.U. (ed.) Proceedings of the 40th IEEE Conference on Decision and Control (December 2001)

    Google Scholar 

  16. Shue, S., Agarwal, R.K.: Design of Automatic Landing Systems using Mixed H2/Hinf Control. Journal of Guidance, Control and Dynamics 22(1), 103–114 (1999)

    Article  Google Scholar 

  17. Li, Y., Sundararajan, N., Saratchandran, P., Wang, Z.F.: Robust Neuro-Hinf Controller Design for Aircraft Auto-Landing. IEEE Transactions on Aerospace and Electronic Systems 40(1), 167–168 (2004)

    Google Scholar 

  18. Li, Y., Wang, Z.F., Sundararajan, N., Saratchandran, P.: Robust and Adaptive Neuro-Controller for Aircraft Undergoing Microburst. In: Proceedings of the American Control Conference, Denver, Colorado (2003)

    Google Scholar 

  19. Gomi, H., Kawato, M.: Neural network control for a closed-loop system using feedback-error-learning. Neural Networks 6(7), 933–946 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Wang, Z., Xiong, G. (2012). Neuro-aided H2 Controller Design for Aircraft under Actuator Failure. In: Gaol, F., Nguyen, Q. (eds) Proceedings of the 2011 2nd International Congress on Computer Applications and Computational Science. Advances in Intelligent and Soft Computing, vol 145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28308-6_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28308-6_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28307-9

  • Online ISBN: 978-3-642-28308-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics