Skip to main content

Complexity Insights of the Minimum Duplication Problem

  • Conference paper
SOFSEM 2012: Theory and Practice of Computer Science (SOFSEM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7147))

Abstract

The Minimum Duplication problem is a well-known problem in phylogenetics and comparative genomics. Given a set of gene trees, the Minimum Duplication problem asks for a species tree that induces the minimum number of gene duplications in the input gene trees. More recently, a variant of the Minimum Duplication problem, called Minimum Duplication Bipartite, has been introduced in [14], where the goal is to find all pre-duplications, that is duplications that precede, in the evolution, the first speciation with respect to a species tree. In this paper, we investigate the complexity of both Minimum Duplication and Minimum Duplication Bipartite problems. First of all, we prove that the Minimum Duplication problem is APX-hard, even when the input consists of five uniquely leaf-labelled gene trees (progressing on the complexity of the problem). Then, we show that the Minimum Duplication Bipartite problem can be solved efficiently by a randomized algorithm when the input gene trees have bounded depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoretical Comput. Sci. 237(1-2), 123–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bansal, M.S., Burleigh, J.G., Eulenstein, O., Wehe, A.: Heuristics for the Gene-Duplication Problem: A Θ(n) Speed-Up for the Local Search. In: Speed, T.P., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 238–252. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Bansal, M.S., Eulenstein, O., Wehe, A.: The Gene-Duplication Problem: Near-Linear Time Algorithms for NNI-Based Local Searches. IEEE/ACM Trans. Comput. Biology Bioinform. 6(2), 221–231 (2009)

    Article  Google Scholar 

  4. Bansal, M.S., Shamir, R.: A Note on the Fixed Parameter Tractability of the Gene-Duplication Problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 8(3), 848–850 (2011)

    Article  Google Scholar 

  5. Byrka, J., Guillemot, S., Jansson, J.: New results on optimizing rooted triplets consistency. Discrete Appl. Math. 158(11), 1136–1147 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, W.-C., Burleigh, J.G., Fernández-Baca, D.F., Eulenstein, O.: An ILP solution for the gene duplication problem. BMC Bioinformatics (suppl. 1), S14(12) (2011)

    Google Scholar 

  7. Chauve, C., El-Mabrouk, N.: New Perspectives on Gene Family Evolution: Losses in Reconciliation and a Link with Supertrees. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 46–58. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Eichler, E.F., Sankoff, D.: Structural dynamics of eukaryotic chromosome evolution. Science 301(5634), 521–565 (2003)

    Article  Google Scholar 

  9. Felsenstein, J.: Phylogenies from molecular sequences: Inference and reliability. Ann. Review Genet. 22, 521–565 (1988)

    Article  Google Scholar 

  10. Fitch, W.M.: Homology a personal view on some of the problems. Trends Genet. 16, 227–231 (2000)

    Article  Google Scholar 

  11. Hallett, M.T., Lagergren, J.: New algorithms for the duplication-loss model. In: RECOMB, pp. 138–146 (2000)

    Google Scholar 

  12. Kleinberg, J., Tardos, E.: Algorithm Design. Pearson Education (2006)

    Google Scholar 

  13. Ma, B., Li, M., Zhang, L.: From Gene Trees to Species Trees. SIAM J. Comput. 30(3), 729–752 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ouangraoua, A., Swenson, K.M., Chauve, C.: An Approximation Algorithm for Computing a Parsimonious First Speciation in the Gene Duplication Model. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 290–301. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Stege, U.: Gene Trees and Species Trees: The Gene-Duplication Problem in Fixed-Parameter Tractable. In: Dehne, F.K.H.A., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 288–293. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Welsh, D.J.A., Powell, M.B.: An upper bound for the chromatic number of a graph and its application to timetabling problems. The Computer Journal 10(1), 85–86 (1967)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blin, G., Bonizzoni, P., Dondi, R., Rizzi, R., Sikora, F. (2012). Complexity Insights of the Minimum Duplication Problem. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds) SOFSEM 2012: Theory and Practice of Computer Science. SOFSEM 2012. Lecture Notes in Computer Science, vol 7147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27660-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27660-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27659-0

  • Online ISBN: 978-3-642-27660-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics