Skip to main content

Contribution of N2 Fixation for the World Agriculture

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Probiotics

Abstract

Plant production of high quality as well as the availability of foods rich in protein is crucially dependent on nitrogen. Tropical agricultural soils often have impaired production due to limited availability of nitrogen, which leads to use of nitrogen fertilizers and alternative resources such as biological nitrogen fixation (BNF). The latter has been used especially in grasses of economic importance, and this fact has initiated an important search in understanding these mechanisms in nonleguminous plants. Nitrogen-fixing bacteria such as rhizobia in turn aroused interest for research into new microbial sources such as nitrogen-fixing endophytic bacteria and not forming nodules. The mechanisms of BFN have grown exponentially and alternative sources to carry out the process increasingly investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai Y, Dáoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48:230–238

    Article  PubMed  CAS  Google Scholar 

  • Bautista VV, Monsalud RG, Yokota A (2010) Devosia yakushimensis sp. nov., isolated from root nodules of Pueraria lobata (Willd.) Ohwi. Int J Syst Evol Microbiol 60:627–632

    Article  PubMed  CAS  Google Scholar 

  • Boeiro L, Perrig D, Masciarellio O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechonol 74:874–880

    Article  Google Scholar 

  • Burdman S, Vedder D, German M, Itzigsohn R, Kigel J, Jurkevitch E, Okon Y (1998) Legume crop yield promotion by inoculation with Azospirillum. In: Elmerich C, Kondorosi A, Newton WE (eds) Biological nitrogen fixation for 21st century, Proceedings of the 11th International Congress on Nitrogen Fixation, Paris. 1997. Kluwer Academic Publishers, Dordrecht, Boston, London, p 609

    Google Scholar 

  • Caballero-Melado J, Martínez-Aguilar L, Paredes-Valdez G, de Los E, Santos P (2004) Brkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54:1165–1172

    Article  Google Scholar 

  • Camacho M, Santamaría C, Temprano F, Rodriguez-Navarro DN, Daza A (2001) Co-inoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L. Can J Microbiol 47:1058–1062

    PubMed  CAS  Google Scholar 

  • Chen WM, Faria SM, James EK, Elliot GN, Lin KY, Chou JH, Sheu SY, Cnockaert M, Sprent JI, Vandamme P (2007) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57:1055–1059

    Article  PubMed  CAS  Google Scholar 

  • Chen WM, Faria SM, Chou JH (2008) Burkholderia sabiae sp nov., isolated from root nodules of Mimosa caesalpiniifolia. Int J Syst Evol Microbiol 58:2174–2179

    Article  PubMed  CAS  Google Scholar 

  • Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735

    Article  PubMed  CAS  Google Scholar 

  • Clayton GW, Rice WA, Lupwayi NZ, Johnston AM, Lafond GP, Grant CA, Walley F (2004) Inoculant formulation and fertilizer nitrogen effects on field pea: crop yield and seed quality. Can J Plant Sci 84:89–96

    Article  Google Scholar 

  • Denton MD, Pearce DJ, Ballard RA, Hannah MC, Mutch LA, Norng S, Slattery JF (2009) A multi-site field evaluation of granular inoculants for legume nodulation. Soil Biol Biochem 41:2508–2516

    Article  CAS  Google Scholar 

  • Dobbelare S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  Google Scholar 

  • Ferreira MC, Andrade DS, Chueire LMO, Takemura SM, Hungria M (2000) Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean. Soil Biol Biochem 32:627–637

    Article  CAS  Google Scholar 

  • Gan Y, Hanson KG, Zentner RP, Selles F, McDonald CL (2005) Response of lentil to microbial inoculation and low rates of fertilization in the semiarid Canadian prairies. Can J Plant Sci 85:847–855

    Article  Google Scholar 

  • Garau G, Yates RJ, Deiana P, Howieson JG (2009) Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol Biochem 41:125–134

    Article  CAS  Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR (2002) Stimulation of nodulation and plant growth of chickpea (Cicer arietinum L.) by Pseudomonas spp. antagonistic to fungal pathogens. Biol Fertil Soil 36:391–396

    Article  CAS  Google Scholar 

  • Graham PH (1981) Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: a review. Field Crop Res 4:93–112

    Article  Google Scholar 

  • Gu CT, Wang ET, Tian CF, Han TX, Chen WF, Sui XH, Chen WX (2008) Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. Int J Syst Evol Microbiol 58:1364–1368

    Article  PubMed  CAS  Google Scholar 

  • Han TX, Wang ET, Wu LJ, Chen WF, Gu JG, Gu CT, Tian CF, Chen WX (2008) Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol 58:1693–1699

    Article  PubMed  CAS  Google Scholar 

  • Hartley EJ, Gemmell LG, Slattery JF, Howieson JG, Herridge DF (2005) Age of peat-based lupin and chickpea inoculants in relating to quality and efficacy. Aust J Exp Agric 45:183–188

    Article  Google Scholar 

  • Hungria M, Andrade DS, Chueire LMO, Probanza A, Guttierrez-Manero FJ, Megias M (2000) Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 32:1515–1528

    Article  CAS  Google Scholar 

  • James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119

    Article  Google Scholar 

  • Lambrecht M, OkonY VBA, Vanderleyden J (2000) Indole-3-acetic: reciprocal signaling molecule in bacterial-plant interactions. Trends Microbiol 8:298–300

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Shi JF, Zhao P, Chen WM, Qin W, Tang M, Wei GH (2011) Rhizobium sphaerophysae sp. nov., a novel species isolated from root nodules of Sphaerophysa salsula in China. Antonie Van Leeuwenhoek 99:845–854

    Article  Google Scholar 

  • Lloret L, Ormeño-Orrillo E, Rincón-Rosales R, Martínez-Romero J, Rogel-Hernández MA, Martínez-Romero E (2007) Ensifer mexicanum sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuitze in Mexico. Syst Appl Microbiol 30:280–290

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Charles TC, Glick BR (2006) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897

    Article  Google Scholar 

  • Michielis J, Dombrecht B, Vermeiren N, Xi C, Luyten E, Vanderleyden J (1998) Phaseolus vulgaris is a non-selective host for nodulation. FEMS Microbiol Ecol 26:193–205

    Article  Google Scholar 

  • Mnasri B, Aouani ME, Mhamdi R (2007) Nodulation and growth of common bean (Phaseolus vulgaris) under water deficiency. Soil Biol Biochem 39:1744–1750

    Article  CAS  Google Scholar 

  • Moreira FMS, Cruz LM, Faria SM, Marsht T, Martinez-Romero E, Pedrosa FO, Pitard R, Young PJW (2006) Azorhizobium doebereinerae sp. nov. microsymbiont of Sesbania virgata (Caz.) Pers. Syst Appl Microbiol 29:197–206

    Article  CAS  Google Scholar 

  • Mostasso L, Mostasso FL, Dias BG, Vargas MAT, Hungria M (2001) Selection of beans (Phaseolus vulgaris L.) rhizobial strains for the Brazilian cerrado. Field Crop Res 73:121–132

    Article  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411:948–950

    Article  PubMed  CAS  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  PubMed  CAS  Google Scholar 

  • Oliveira ALM, Canuto EL, Urquiaga S, Reis VM, Baldani JI (2006) Yield of micropropagated sugarcane varieties in diferent soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid: a review. Can J Microbiol 42:207–220

    Article  PubMed  CAS  Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodríguez-Barrueco C, Martínez-Molina E, Velázquez E (2000) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    Article  Google Scholar 

  • Peng G, Wang H, Zhang G, Hou W, Liu Y, Wang ET, Tan Z (2006) Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Evol Microbiol 56:1263–1271

    Article  PubMed  CAS  Google Scholar 

  • Perin L, Martínez-Aguilar L, Paredes-Valdez G, Baldani JI, Estrada-de Los Santos P, Reis VM, Caballero-Mellado J (2006) Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int J Syst Evol Microbiol 56:1931–1937

    Article  PubMed  CAS  Google Scholar 

  • Rahman MM, Sengupta MK, Chowdhury UK, Lodh D, Das B, Ahamed S, Mandal D, Hossain A, Mukherjee SC, Pati S, Saha KC, Chakraborti D (2006) Arsenic contamination incidents around the world. In: Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P (eds) Managing arsenic in the environment. From soil to human health. CSIRO, Collingwood, VIC, pp 3–30

    Google Scholar 

  • Ramíres-Bahena MH, Peix A, Rivas R, Camacho M, Rodriguez-Navarro DN, Mateos PF, Martínez-Molina E, Willems A, Velázquez E (2009) Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. Int J Syst Evol Microbiol 59:1929–1934

    Article  Google Scholar 

  • Reichman SM (2007) The potential use of the legume–rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol Biochem 39:2587–2593

    Article  CAS  Google Scholar 

  • Reis VM, Estrada-de Los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P, Baldani VLD, Schmidt M, Baldani JI, Balandreau J, Hartmann A, Caballero-Mellado J (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54:2155–2162

    Article  PubMed  CAS  Google Scholar 

  • Rincón-Rosales R, Lloret L, Lloret L, Ponce E, Martínez-Romero E (2008) Rhizobia with different symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum. FEMS Microbiol Ecol 67:103–117

    Article  Google Scholar 

  • Soares ALL, Pereira JPAR, Ferreira PAA, Vale HMM, Lima AS, Andrade MJB, Moreira FMS (2006) Eficiência agronômica de rizóbios selecionados

    Google Scholar 

  • Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 8:967–980

    Article  Google Scholar 

  • Tejera N, Lluch C, Martínez-Toledo MV, González-Lopez J (2005) Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant Soil 270:223–232

    Article  CAS  Google Scholar 

  • Tian CF, Wang ET, Wu LJ (2008) Rhizobium fabae sp nov., a bacterium that nodulates Vicia faba. Int J Syst Evol Microbiol 58:2871–2875

    Article  PubMed  CAS  Google Scholar 

  • Trinick MJ (1979) Structure of nitrogen-fixing nodules formed by Rhizobium on roots of Parasponia andersonii. Can J Microbiol 25:565–578

    Article  PubMed  CAS  Google Scholar 

  • Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: 15 N and nitrogen balance estimates. Soil Sci Soc Am J 56:105–111

    Article  Google Scholar 

  • Valverde A, Velázquez E, Fernández-Santos F, Vizcaíno N, Rivas R, Mateos PF, Martínez-Molina E, Igual JM, Willens A (2005) Phyllobacterium trifolli sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989

    Article  PubMed  CAS  Google Scholar 

  • Valverde A, Igual JM, Peix A, Cervantes E, Velázquez E (2006) Rhizobium lusitanum sp. nov., a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol 56:2631–2637

    Article  PubMed  CAS  Google Scholar 

  • Vandamme P, Goris J, Chen WM (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512

    Article  PubMed  Google Scholar 

  • Vargas MAT, Hungria M (1997) Fixação biológica do N2 na cultura da soja. In: Vargas MAT, Hungria M (eds) Biologia dos Solos de Cerrados EMBRAPA-CPAC, Planaltina, pp 297–360

    Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant-growth-promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    Article  PubMed  CAS  Google Scholar 

  • Voss M, Sidiras N (1985) Nodulaçáo da soja em plantio direto em comparação com plantio convencional. Pesquisa Agropecuária Brasileira 20:775–782

    Google Scholar 

  • Wang FQ, Wang ET, Liu J, Chen Q, Sui XH, Chen WF, Chen WX (2007) Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int J Syst Evol Microbiol 57:1192–1199

    Article  PubMed  CAS  Google Scholar 

  • Xie CH, Yokota A (2005) Azospirillum oryzae sp nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int J Syst Evol Microbiol 55:1435–1438

    Article  PubMed  CAS  Google Scholar 

  • Xie CH, Yokota A (2006) Sphingomonas azotifigens sp nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. Int J Syst Evol Microbiol 56:889–893

    Article  PubMed  CAS  Google Scholar 

  • Zhang RJ, Hou BC, Wang ET, Li Y, Zhang XX, Chen WX (2011) Rhizobium tubonense sp. nov., isolated from root nodules of Oxytropis glabra. Int J Syst Evol Microbiol 61:512–517

    Article  PubMed  CAS  Google Scholar 

  • Zurdo-Piñero JL, Rivas R, Trujillo ME, Vizcaino N, Carrasco JA, Chamber M, Palomares A, Mateos PF, Martínez-Molina E, Velázquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Luís Braghini Sá .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sá, A.L.B., Dias, A.C.F., de Araújo Teixeira, M., Vieira, R.F. (2012). Contribution of N2 Fixation for the World Agriculture. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Probiotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27515-9_17

Download citation

Publish with us

Policies and ethics