Skip to main content

Randomized Algorithms for Hamiltonian Simulation

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods 2010

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 23))

Abstract

We consider randomized algorithms for simulating the evolution of a Hamiltonian \(H ={ \sum \nolimits }_{j=1}^{m}{H}_{j}\) for time t. The evolution is simulated by a product of exponentials of H j in a random sequence, and random evolution times. Hence the final state of the system is approximated by a mixed quantum state. First we provide a scheme to bound the error of the final quantum state in a randomized algorithm. Then we obtain randomized algorithms which have the same efficiency as certain deterministic algorithms but which are simpler to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. P. Feynman, Simulating Physics with computers, Int. J. Theoret. Phys. 21, 467–488 (1982)

    Google Scholar 

  2. S. Lloyd, Universal quantum simulators, Science 273, 1073–1078 (1996)

    Google Scholar 

  3. C. Zalka, Simulating Quantum Systems on a Quantum Computer, Proc. R. Soc. Lond. A, 454, 313–323 (1998)

    Google Scholar 

  4. D. W. Berry, G. Ahokas, R. Cleve, B. C. Sanders, Efficient quantum algorithms for simulating sparse Hamiltonians, Communications in Mathematical Physics 270, 359 (2007)

    Google Scholar 

  5. I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, A. Aspuru-Guzik, Polynomial-time quantum algorithm for the simulation of chemical dynamics, Proc. Natl. Acad. Sci. 105, 18681(2008)

    Google Scholar 

  6. D. Aharonov, A. Ta-Shma, Adiabatic quantum state generation and statistical zero knowledge, Proc. 35th Annual ACM Symp. on Theoty of Computing, 20–29 (2003)

    Google Scholar 

  7. E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum computation by adiabatic evolution, quant-ph/0001106 (2000)

    Google Scholar 

  8. E. Farhi, S. Gutmann, Analog analogue of a digital quantum computation. Phys. Rev. A 57(4), 24032406 (1998)

    Google Scholar 

  9. A. M. Childs, E. Farhi, S. Gutmann, An example of the difference between quantum and classical random walks, J. Quant. Inf. Proc. 1, 35–43 (2002)

    Google Scholar 

  10. E. Farhi, J. Goldstone, S. Gutmann, A Quantum Algorithm for the Hamiltonian NAND Tree, quant-ph/0702144 (2007)

    Google Scholar 

  11. A. M. Childs, Universal computation by quantum walk, Phys. Rev. Lett, 102, 180501 (2009)

    Google Scholar 

  12. A. M. Childs, On the relationship between continuous- and discrete-time quantum walk, quant-ph/0810.0312 (2008)

    Google Scholar 

  13. D. W. Berry, A. M. Childs, The quantum query complexity of implementing black-box unitary transformations, quant-ph/0910. 4157 (2009)

    Google Scholar 

  14. M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000)

    Google Scholar 

  15. G. Strang, On the construction and comparison of difference schemes, SIAM J. Num. Analysis, 506–517 (1968)

    Google Scholar 

  16. M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, Phys. Lett. A 146, 319–323 (1990)

    Google Scholar 

  17. M. Suzuki, General theory of fractal path integrals with application to many-body theories and statistical physics, J. Math. Phys, 32, 400–407 (1991)

    Google Scholar 

Download references

Acknowledgements

We are grateful to Anargyros Papageorgiou, Joseph F. Traub, Henryk Wozniakowski, Columbia University and Zhengfeng Ji, Perimeter Institute for Theoretical Physics, for their very helpful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, C. (2012). Randomized Algorithms for Hamiltonian Simulation. In: Plaskota, L., Woźniakowski, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2010. Springer Proceedings in Mathematics & Statistics, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27440-4_42

Download citation

Publish with us

Policies and ethics