Skip to main content

Using Belief Theory to Formalize the Agent Behavior: Application to the Simulation of Avian Flu Propagation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7057))

Abstract

Multi-agent simulations are powerful tools to study complex systems. However, a major difficulty raised by these simulations concerns the design of the agent behavior. Indeed, when the agent behavior is lead by many conflicting criteria (needs and desires), its definition is very complex. In order to address this issue, we propose to use the belief theory to formalize the agent behavior. This formal theory allows to manage the criteria incompleteness, uncertainty and imprecision. The formalism proposed divides the decision making process in three steps: the first one consists in computing the basic belief masses of each criterion; the second one in merging these belief masses; and the last one in making a decision from the merged belief masses. An application of the approach is proposed in the context of a model dedicated to the study of the avian flu propagation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rao, A.S., Georgeff, M.P.: Modeling Rational Agents within a BDI-Architecture. In: Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning, pp. 473–484 (1991)

    Google Scholar 

  2. Robert, G., Guillot, A.: A motivational architecture of action selection for non-player characters in dynamic environments. International Journal of Intelligent Games & Simulation 4, 1–12 (2005)

    Google Scholar 

  3. Figueira, J., Mousseau, V., Roy, B.: ELECTRE Methods. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 133–162. Springer, New York (2005)

    Chapter  Google Scholar 

  4. Behzadian, M., Kazemzadeh, R., Albadvi, A., Aghdasi, M.: PROMETHEE: A comprehensive literature review on methodologies and applications. European Journal of Operational Research (2009)

    Google Scholar 

  5. Geoffrion, A., Dyer, J., Feinberg, A.: An interactive approach for multicriterion optimisation with an application to the operation of an academic department. Manage. Sci. 19(4), 357–368 (1972)

    Article  MATH  Google Scholar 

  6. Jacquet-Lagreze, E., Siskos, J.: Assessing a set of additive utility functions for multicriteria decision making, the UTA method. European Journal of Operational Research 10(2), 151–164 (1982)

    Article  MATH  Google Scholar 

  7. Benayoun, R., Laritchev, O., de Mongolfier, J., Tegny, J.: Linear programming with multiple objective functions: Step method (stem). Math. Program. 1(3), 366–375 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ignizio, J.: A review of goal programming: a tool for multi objective analysis. J. Oper. Res. Soc. 29(11), 1109–1119 (1978)

    Article  MATH  Google Scholar 

  9. Ben Mena, S.: Introduction aux méthodes multicritères d’aide à la décision. Biotechnol. Agro. Soc. Environ. 4(2), 83–93 (2000)

    Google Scholar 

  10. Marcum, J.: A statistical theory of target detection by pulsed radar. IEEE Trans. Info. Thry. (1960)

    Google Scholar 

  11. Shafer, G.: A mathematical theory of evidence. Princeton University Press (1976)

    Google Scholar 

  12. Dempster, A.: Upper and lower probabilities induced by multivalued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  13. Omrani, H., Ion-Boussier, L., Trigano, P.: A new approach for impacts assessment of urban mobility. WSEAS Transaction on Information Science and Applications 4(3), 439–444 (2007)

    Google Scholar 

  14. Olteanu-Raimond, A.M., Mustière, S.: Data matching - a matter of belief. In: 13th International Symposium on Spatial Data Handling (SDH 2008), Montpellier, France (2008)

    Google Scholar 

  15. Taillandier, P., Duchêne, C., Drogoul, A.: Using Belief Theory to Diagnose Control Knowledge Quality. Application to cartographic generalization. In: IEEE-RIVF, Danang City, Vietnam (2009)

    Google Scholar 

  16. Appriou, A.: Probabilité et incertitude en fusion de données multi-senseurs. Revue Scientifique et Technique de la Défense 1, 27–40 (1991)

    Google Scholar 

  17. Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66(2), 191–234 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Smets, P.: Constructing the pignistic probability function in a context of uncertainty. Uncertainty in Artificial Intelligence 5, 29–39 (1990)

    Article  MATH  Google Scholar 

  19. Amouroux, E., Gaudou, B., Desvaux, S., Drogoul, A.: O.D.D.: a Promising but Incomplete Formalism For Individual-Based Model Specification. Paper to appear in ’IEEE International Conference on Computing and Telecommunication Technologies’ (2010)

    Google Scholar 

  20. Amouroux, E., Chu, T.-Q., Boucher, A., Drogoul, A.: GAMA: An Environment for Implementing and Running Spatially Explicit Multi-Agent Simulations. In: Ghose, A., Governatori, G., Sadananda, R. (eds.) PRIMA 2007. LNCS, vol. 5044, pp. 359–371. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Taillandier, P., Drogoul, A., Vo, D.A., Amouroux, A.: GAMA: A Simulation Platform that Integrates Geographical Information Data, Agent-Based Modeling and Multi-Scale Control. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS(LNAI), vol. 7057, pp. 244–260. Springer, Heidelberg (2011)

    Google Scholar 

  22. Taillandier, P., Buard, E.: Designing Agent Behaviour in Agent-Based Simulation through Participatory Method. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.) PRIMA 2009. LNCS, vol. 5925, pp. 571–578. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Taillandier, P., Chu, T.Q.: Using Participatory Paradigm to Learn Human Behaviour. In: International Conference on Knowledge and Systems Engineering, Hanoi, Vietnam, pp. 55–60 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Taillandier, P., Amouroux, E., Vo, D.A., Olteanu-Raimond, AM. (2012). Using Belief Theory to Formalize the Agent Behavior: Application to the Simulation of Avian Flu Propagation. In: Desai, N., Liu, A., Winikoff, M. (eds) Principles and Practice of Multi-Agent Systems. PRIMA 2010. Lecture Notes in Computer Science(), vol 7057. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25920-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25920-3_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25919-7

  • Online ISBN: 978-3-642-25920-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics