Skip to main content

Nonredundant 3D Structure Datasets for RNA Knowledge Extraction and Benchmarking

  • Chapter
  • First Online:
RNA 3D Structure Analysis and Prediction

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 27))

Abstract

The continual improvement of methods for RNA 3D structure modeling and prediction requires accurate and statistically meaningful data concerning RNA structure, both for extraction of knowledge and for benchmarking of structure predictions. The source of sufficiently accurate structural data for these purposes is atomic-resolution X-ray structures of RNA nucleotides, oligonucleotides, and biologically functional RNA molecules. All of our basic knowledge of bond lengths, angles, and stereochemistry in RNA nucleotides, as well as their interaction preferences, including all types of base-pairing, base-stacking, and base-backbone interactions, is ultimately extracted from X-ray structures. One key requirement for reference databases intended for knowledge extraction is the nonredundancy of the structures that are included in the analysis, to avoid bias in the deduced frequency parameters. Here, we address this issue and detail how we produce, on a largely automated and ongoing basis, nonredundant lists of atomic-resolution structures at different resolution thresholds for use in knowledge-driven RNA applications. The file collections are available for download at http://rna.bgsu.edu/nrlist. The primary lists that we provide only include X-ray structures, organized by resolution thresholds, but for completeness, we also provide separate lists that include structures solved by NMR or cryo-EM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cate JH, Gooding AR et al (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273(5282):1678–1685

    Article  PubMed  CAS  Google Scholar 

  • Chi YI, Martick M et al (2008) Capturing hammerhead ribozyme structures in action by modulating general base catalysis. PLoS Biol 6(9):e234

    Article  PubMed  Google Scholar 

  • Correll CC, Munishkin A et al (1998) Crystal structure of the ribosomal RNA domain essential for binding elongation factors. Proc Natl Acad Sci USA 95(23):13436–13441

    Article  PubMed  CAS  Google Scholar 

  • Correll CC, Beneken J et al (2003) The common and the distinctive features of the bulged-G motif based on a 1.04 A resolution RNA structure. Nucleic Acids Res 31(23):6806–6818

    Article  PubMed  CAS  Google Scholar 

  • Garst AD, Heroux A et al (2008) Crystal structure of the lysine riboswitch regulatory mRNA element. J Biol Chem 283(33):22347–22351

    Article  PubMed  CAS  Google Scholar 

  • Kiliszek A, Kierzek R et al (2010) Atomic resolution structure of CAG RNA repeats: structural insights and implications for the trinucleotide repeat expansion diseases. Nucleic Acids Res 38(22):8370–6

    Google Scholar 

  • Korostelev A, Asahara H et al (2008) Crystal structure of a translation termination complex formed with release factor RF2. Proc Natl Acad Sci USA 105(50):19684–19689

    Article  PubMed  CAS  Google Scholar 

  • Kulshina N, Baird NJ et al (2009) Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nat Struct Mol Biol 16(12):1212–1217

    Article  PubMed  CAS  Google Scholar 

  • Leontis NB, Westhof E (2001) Geometric nomenclature and classification of RNA base pairs. RNA 7(4):499–512

    Article  PubMed  CAS  Google Scholar 

  • Nussinov R, Jacobson AB (1980) Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc Natl Acad Sci USA 77(11):6309–6313

    Article  PubMed  CAS  Google Scholar 

  • Nussinov R, Pieczenik G et al (1978) Algorithms for loop matchings. SIAM J Appl Math 35(1):68–82

    Article  Google Scholar 

  • Oubridge C, Ito N et al (1994) Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372(6505):432–8

    Google Scholar 

  • Oubridge C, Ito N et al (1995) Crystallisation of RNA-protein complexes. II. The application of protein engineering for crystallisation of the U1A protein-RNA complex. J Mol Biol 249(2):409–23

    Google Scholar 

  • Petrov AI, Zirbel CL et al (2011) WebFR3D – a server for finding, aligning and analyzing recurrent RNA 3D motifs. Nucleic Acids Res 39:W50–W55

    Article  PubMed  CAS  Google Scholar 

  • Rahrig RR, Leontis NB et al (2010) R3D Align: global pairwise alignment of RNA 3D structures using local superpositions. Bioinformatics 26(21):2689–2697

    Article  PubMed  CAS  Google Scholar 

  • Reiter NJ, Osterman A et al (2010) Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. Nature 468(7325):784–789

    Article  PubMed  CAS  Google Scholar 

  • Richardson JS, Schneider B et al (2008) RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution). RNA 14(3):465–481

    Article  PubMed  CAS  Google Scholar 

  • Sarver M, Zirbel CL et al (2008) FR3D: finding local and composite recurrent structural motifs in RNA 3D structures. J Math Biol 56(1–2):215–252

    PubMed  Google Scholar 

  • Schmeing TM, Voorhees RM et al (2009) The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326(5953):688–694

    Article  PubMed  CAS  Google Scholar 

  • Selmer M, Dunham CM et al (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313(5795):1935–1942

    Article  PubMed  CAS  Google Scholar 

  • Serganov A, Huang L et al (2008) Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature 455(7217):1263–1267

    Article  PubMed  CAS  Google Scholar 

  • Smith KD, Lipchock SV et al (2009) Structural basis of ligand binding by a c-di-GMP riboswitch. Nat Struct Mol Biol 16(12):1218–1223

    Article  PubMed  CAS  Google Scholar 

  • Smith KD, Lipchock SV et al (2010) Structural and biochemical determinants of ligand binding by the c-di-GMP riboswitch. Biochemistry 49(34):7351–7359

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Korostelev A et al (2011) Crystal structures of complexes containing domains from two viral internal ribosome entry site (IRES) RNAs bound to the 70S ribosome. Proc Natl Acad Sci USA 108(5):1839–1844

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Eric Westhof for encouragement and guidance in writing this chapter and Anton Petrov for the help with editing and figures.

Funding. National Institutes of Health (Grant No. 1R01GM085328-01A1 to C.L.Z. and N.B.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig L. Zirbel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leontis, N.B., Zirbel, C.L. (2012). Nonredundant 3D Structure Datasets for RNA Knowledge Extraction and Benchmarking. In: Leontis, N., Westhof, E. (eds) RNA 3D Structure Analysis and Prediction. Nucleic Acids and Molecular Biology, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25740-7_13

Download citation

Publish with us

Policies and ethics