Skip to main content

Perioperative Goal-directed Therapy: Monitoring, Protocolized Care and Timing

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2012

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM,volume 2012))

  • 2267 Accesses

Abstract

In the 1970s, Shoemaker observed that patients who survived high-risk surgical interventions had distinct hemodynamic patterns [1]. These included higher mean global oxygen delivery (DO2), cardiac index (CI) and tissue oxygen demand (VO2) than non-survivors. Shoemaker went on to develop the concept of perioperative optimization by using the survivors’ patterns as therapeutic goals [2]. Amongst survivors, consistent ‘supranormal’ oxygen flow physiological values were noted of DO2 > 600 ml/min/m2, VO2 > 170 ml/min/m2 and CI > 4.5 l/min/m2 [3]. Positive results in initial uncontrolled studies were corroborated by a controlled trial that used supranormal goals for hemodynamic optimization in the protocol group of high-risk surgical patients [4]. This protocol decreased mortality and spurred a wave of interest in perioperative goal directed therapy (GDT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shoemaker WC, Montgomery ES, Kaplan E, Elwyn DH (1973) Physiologic patterns in surviving and nonsurviving shock patients. Use of sequential cardiorespiratory variables in defining criteria for therapeutic goals and early warning of death. Arch Surg 106: 630–636

    Article  CAS  PubMed  Google Scholar 

  2. Shoemaker WC, Appel PL, Waxman K, Schwartz S, Chang P (1982) Clinical trial of survivors’ cardiorespiratory patterns as therapeutic goals in critically ill postoperative patients. Crit Care Med 10: 398–403

    Article  CAS  PubMed  Google Scholar 

  3. Shoemaker WC, Appel PL, Kram HB (1993) Hemodynamic and oxygen transport responses in survivors and nonsurvivors of high-risk surgery. Crit Care Med 21: 977–990

    Article  CAS  PubMed  Google Scholar 

  4. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94: 1176–1186

    Article  CAS  PubMed  Google Scholar 

  5. Connett RJ, Honig CR, Gayeski TE, Brooks GA (1990) Defining hypoxia: a systems view of VO2, glycolysis, energetics, and intracellular PO2. J Appl Physiol 68: 833–842

    CAS  PubMed  Google Scholar 

  6. Leach RM, Treacher DF (1992) The pulmonary physician and critical care. 6. Oxygen transport: the relation between oxygen delivery and consumption. Thorax 47: 971–978

    Article  CAS  PubMed  Google Scholar 

  7. Shoemaker WC, Appel PL, Kram HB (1992) Role of oxygen debt in the development of organ failure sepsis, and death in high-risk surgical patients. Chest 102: 208–215

    Article  CAS  PubMed  Google Scholar 

  8. Karimova A, Pinsky DJ (2001) The endothelial response to oxygen deprivation: biology and clinical implications. Intensive Care Med 27: 19–31

    Article  CAS  PubMed  Google Scholar 

  9. Sibbald WJ, Fox G, Martin C (1991) Abnormalities of vascular reactivity in the sepsis syndrome. Chest 100 (3 Suppl): 155S–159S

    CAS  PubMed  Google Scholar 

  10. Allen DB, Maguire JJ, Mahdavian M, et al (1997) Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms. Arch Surg 132: 991–996

    Article  CAS  PubMed  Google Scholar 

  11. Boyd O, Jackson N (2005) How is risk defined in high-risk surgical patient management? Crit Care 9: 390–396

    Article  PubMed  Google Scholar 

  12. Jhanji S, Thomas B, Ely A, Watson D, Hinds CJ, Pearse RM (2008) Mortality and utilisation of critical care resources amongst high-risk surgical patients in a large NHS trust. Anaesthesia 63: 695–700

    Article  CAS  PubMed  Google Scholar 

  13. Khuri SF, Henderson WG, DePalma RG, Mosca C, Healey NA, Kumbhani DJ (2005) Determinants of long-term survival after major surgery and the adverse effect of postoperative complications. Ann Surg 242: 326–341

    PubMed  Google Scholar 

  14. Kamphues C, Bova R, Schricke D, et al (2012) Postoperative complications deteriorate long-term outcome in pancreatic cancer patients. Ann Surg Oncol (in press)

    Google Scholar 

  15. Nathan DP, Brinster CJ, Jackson BM, et al (2011) Predictors of decreased short-and longterm survival following open abdominal aortic aneurysm repair. J Vasc Surg 54: 1237–1243

    Article  PubMed  Google Scholar 

  16. Kern JW, Shoemaker WC (2002) Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 30: 1686–1692

    Article  PubMed  Google Scholar 

  17. Boyd O, Hayes M (1999) The oxygen trail: the goal. Br Med Bull 55: 125–139

    Article  CAS  PubMed  Google Scholar 

  18. Heyland DK, Cook DJ, King D, Kernerman P, Brun-Buisson C (1996) Maximizing oxygen delivery in critically ill patients: a methodologic appraisal of the evidence. Crit Care Med 24: 517–524

    Article  CAS  PubMed  Google Scholar 

  19. Gattinoni L, Brazzi L, Pelosi P, et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 333: 1025–1032

    Article  CAS  PubMed  Google Scholar 

  20. Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330: 1717–1722

    Article  CAS  PubMed  Google Scholar 

  21. Sandham JD, Hull RD, Brant RF, et al (2003) A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 348: 5–14

    Article  PubMed  Google Scholar 

  22. Poeze M, Greve JW, Ramsay G (2005) Meta-analysis of hemodynamic optimization: relationship to methodological quality. Crit Care 9: R 771–779

    Article  Google Scholar 

  23. Hamilton MA, Cecconi M, Rhodes A (2011) A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 112: 1392–1402

    Article  PubMed  Google Scholar 

  24. Gurgel ST, do Nascimento P Jr (2011) Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg 112: 1384–1391

    Article  PubMed  Google Scholar 

  25. Jones DR, Lee HT (2008) Perioperative renal protection. Best Pract Res Clin Anaesthesiol 22: 193–208

    Article  PubMed  Google Scholar 

  26. Brienza N, Giglio MT, Marucci M, Fiore T (2009) Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med 37: 2079–2090

    Article  PubMed  Google Scholar 

  27. Giglio MT, Marucci M, Testini M, Brienza N (2009) Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials. Br J Anaesth 103: 637–646

    Article  CAS  PubMed  Google Scholar 

  28. Dalfino L, Giglio MT, Puntillo F, Marucci M, Brienza N (2011) Haemodynamic goaldirected therapy and postoperative infections: earlier is better. A systematic review and meta-analysis. Crit Care 15: R154

    Article  Google Scholar 

  29. Rhodes A, Cecconi M, Hamilton M, et al (2010) Goal-directed therapy in high-risk surgical patients: a 15-year follow-up study. Intensive Care Med 36: 1327–1332

    Article  PubMed  Google Scholar 

  30. Wo CC, Shoemaker WC, Appel PL, Bishop MH, Kram HB, Hardin E (1993) Unreliability of blood pressure and heart rate to evaluate cardiac output in emergency resuscitation and critical illness. Crit Care Med 21: 218–223

    Article  CAS  PubMed  Google Scholar 

  31. Shoemaker WC, Czer LS (1979) Evaluation of the biologic importance of various hemodynamic and oxygen transport variables: which variables should be monitored in postoperative shock? Crit Care Med 7: 424–431

    Article  CAS  PubMed  Google Scholar 

  32. Rady MY, Rivers EP, Nowak RM (1996) Resuscitation of the critically ill in the ED: responses of blood pressure, heart rate, shock index, central venous oxygen saturation, and lactate. Am J Emerg Med 14: 218–225

    Article  CAS  PubMed  Google Scholar 

  33. Cannesson M, Pestel G, Ricks C, Hoeft A, Perel A (2011) Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists. Crit Care 15: R197

    Article  Google Scholar 

  34. Bishop MH, Shoemaker WC, Appel PL, et al (1993) Relationship between supranormal circulatory values, time delays, and outcome in severely traumatized patients. Crit Care Med 21: 56–63

    Article  CAS  PubMed  Google Scholar 

  35. Bland RD, Shoemaker WC, Abraham E, Cobo JC (1985) Hemodynamic and oxygen transport patterns in surviving and nonsurviving postoperative patients. Crit Care Med 13: 85–90

    Article  CAS  PubMed  Google Scholar 

  36. Boyd O, Grounds RM, Bennett ED (1993) A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA 270: 2699–2707

    Article  CAS  PubMed  Google Scholar 

  37. Velmahos GC, Demetriades D, Shoemaker WC, et al (2000) Endpoints of resuscitation of critically injured patients: normal or supranormal? A prospective randomized trial. Ann Surg 232: 409–418

    Article  CAS  PubMed  Google Scholar 

  38. Tuchschmidt J, Fried J, Astiz M, Rackow E (1992) Elevation of cardiac output and oxygen delivery improves outcome in septic shock. Chest 102: 216–220

    Article  CAS  PubMed  Google Scholar 

  39. Polonen P, Ruokonen E, Hippelainen M, Poyhonen M, Takala J (2000) A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 90: 1052–1059

    Article  CAS  PubMed  Google Scholar 

  40. Connors AF Jr, Speroff T, Dawson NV, et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 276: 889–897

    Article  PubMed  Google Scholar 

  41. Zion MM, Balkin J, Rosenmann D, et al (1990) Use of pulmonary artery catheters in patients with acute myocardial infarction. Analysis of experience in 5,841 patients in the SPRINT Registry. SPRINT Study Group. Chest 98: 1331–1335

    Article  CAS  PubMed  Google Scholar 

  42. Abbas SM, Hill AG (2008) Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia 63: 44–51

    Article  CAS  PubMed  Google Scholar 

  43. NICE (2011) MTG3 CardioQ-ODM (oesophageal Doppler monitor): guidance. www.nice. org.uk/guidance/MTG3. Accessed November 2011

    Google Scholar 

  44. Morgan P, Al-Subaie N, Rhodes A (2008) Minimally invasive cardiac output monitoring. Curr Opin Crit Care 14: 322–326

    Article  PubMed  Google Scholar 

  45. Alhashemi JA, Cecconi M, Hofer CK (2011) Cardiac output monitoring: an integrative perspective. Crit Care 15: 214

    Article  PubMed  Google Scholar 

  46. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED (2005) Early goaldirected therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care 9: R687–693

    Article  Google Scholar 

  47. Goepfert MS, Reuter DA, Akyol D, Lamm P, Kilger E, Goetz AE (2007) Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med 33: 96–103

    Article  PubMed  Google Scholar 

  48. Buettner M, Schummer W, Huettemann E, Schenke S, van Hout N, Sakka SG (2008) Influence of systolic-pressure-variation-guided intraoperative fluid management on organ function and oxygen transport. Br J Anaesth 101: 194–199

    Article  CAS  PubMed  Google Scholar 

  49. Mayer J, Boldt J, Mengistu AM, Rohm KD, Suttner S (2010) Goal-directed intraoperative therapy based on autocalibrated arterial pressure waveform analysis reduces hospital stay in high-risk surgical patients: a randomized, controlled trial. Crit Care 14: R18

    Article  Google Scholar 

  50. Cecconi M, Fasano N, Langiano N, et al (2011) Goal-directed haemodynamic therapy during elective total hip arthroplasty under regional anaesthesia. Crit Care 15: R132

    Article  Google Scholar 

  51. Collaborative Study Group on Perioperative ScvO2 Monitoring (2006) Multicentre study on peri-and postoperative central venous oxygen saturation in high-risk surgical patients. Crit Care 10: R158

    Article  Google Scholar 

  52. Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377

    Article  CAS  PubMed  Google Scholar 

  53. Dellinger RP, Levy MM, Carlet JM, et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36: 296–327

    Article  PubMed  Google Scholar 

  54. Donati A, Loggi S, Preiser JC, et al (2007) Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest 132: 1817–1824

    Article  PubMed  Google Scholar 

  55. Cecconi M, Parsons AK, Rhodes A (2011) What is a fluid challenge? Curr Opin Crit Care 17: 290–295

    Article  PubMed  Google Scholar 

  56. Noblett SE, Snowden CP, Shenton BK, Horgan AF (2006) Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg 93: 1069–1076

    Article  CAS  PubMed  Google Scholar 

  57. Rhodes A, Cecconi M, Hamilton M, et al (2010) Goal-directed therapy in high-risk surgical patients: a 15-year follow-up study. Intensive Care Med 36: 1327–1332

    Article  PubMed  Google Scholar 

  58. Morris AH (2003) Treatment algorithms and protocolized care. Curr Opin Crit Care 9: 236–240

    Article  PubMed  Google Scholar 

  59. Wilson J, Woods I, Fawcett J, et al (1999) Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ 318: 1099–1103

    Article  CAS  PubMed  Google Scholar 

  60. Lobo SM, Lobo FR, Polachini CA, et al (2006) Prospective, randomized trial comparing fluids and dobutamine optimization of oxygen delivery in high-risk surgical patients [ISRCTN42445141]. Crit Care 10: R72

    Article  Google Scholar 

  61. Harvey S, Harrison DA, Singer M, et al (2005) Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet 366: 472–477

    Article  PubMed  Google Scholar 

  62. Takala J, Ruokonen E, Tenhunen JJ, Parviainen I, Jakob SM (2011) Early non-invasive cardiac output monitoring in hemodynamically unstable intensive care patients: A multicenter randomized controlled trial. Crit Care 15: R148

    Article  Google Scholar 

  63. Benes J, Chytra I, Altmann P, et al (2010) Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care 14: R118

    Article  Google Scholar 

  64. Poeze M, Greve JW, Ramsay G (1999) Oxygen delivery in septic shock. Chest 116: 1145

    Article  CAS  PubMed  Google Scholar 

  65. Hollenberg SM, Cunnion RE (1994) Endothelial and vascular smooth muscle function in sepsis. J Crit Care 9: 262–280

    Article  CAS  PubMed  Google Scholar 

  66. Abid O, Akca S, Haji-Michael P, Vincent JL (2000) Strong vasopressor support may be futile in the intensive care unit patient with multiple organ failure. Crit Care Med 28: 947–949

    Article  CAS  PubMed  Google Scholar 

  67. Fink MP (2002) Bench-to-bedside review: Cytopathic hypoxia. Crit Care 6: 491–499

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cecconi, M., Corredor, C., Rhodes, A. (2012). Perioperative Goal-directed Therapy: Monitoring, Protocolized Care and Timing. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2012. Annual Update in Intensive Care and Emergency Medicine, vol 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25716-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25716-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25715-5

  • Online ISBN: 978-3-642-25716-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics