Skip to main content

Determination of the Sonic Point in Unsteady Shock Reflections Using Various Techniques Based on Numerical Flowfield Analysis

  • Conference paper

Introduction

When a moving shock wave encounters a convex cylinder, reflects from it regularly, and propagates further, at one particular shock position corresponding to the so-called sonic point the flow on the cylinder’s surface, just behind the reflected shock becomes sonic with respect to the moving reflection point. The sonic point is prominent in the theory of regular-to-Mach reflection transition as one of its possible criteria [1]. When the flow behind the reflected shock wave becomes sonic, downstream perturbations can reach the reflection point and, supposedly,may cause the regular-to-Mach reflection transition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Dor, G.: Shock wave reflection phenomena, 2nd edn. Springer (2007)

    Google Scholar 

  2. Skews, B.W., Kleine, H.: J. of Fluid Mech. 654, 195–205 (2010)

    Article  MATH  Google Scholar 

  3. Skews, B.W., Kleine, H.: Experiments in Fluids 46(1), 65–76 (2009)

    Article  Google Scholar 

  4. Drikakis, D., Ofengeim, D., Timofeev, E., Voionovich, P.: J. of Fluids and Structures 11(6), 665–691 (1997)

    Article  Google Scholar 

  5. Hakkaki-Fard, A., Yu Su, Y., Timofeev, E.: Numerical modeling of shock wave front structure using the Navier-Stokes equations and adaptive unstructured grids. In: Proc. 17th Annual Conf. of CFD Society of Canada, Ottawa, May 3-5, 6 p (2009)

    Google Scholar 

  6. Ben-Dor, G., Takayama, K.: Shock Waves 2(4), 211–223 (1992)

    Article  MATH  Google Scholar 

  7. Ben-Dor, G., Takayama, K.: AIAA Journal 24(4), 682–684 (1986)

    Article  Google Scholar 

  8. Hakkaki-Fard, A., Timofeev, E.: High resolution determination of sonic and detachment angles at shock wave reflection from a circular cylinder. In: Proc. 17th Annual Conf. of CFD Society of Canada, Ottawa, May 3-5, 6 p (2009)

    Google Scholar 

  9. Lock, G.D., Dewey, J.M.: Experiments in Fluids 7, 289–292 (1989)

    Article  Google Scholar 

  10. Longhurst, R.S.: Geometrical and physical optics, 2nd edn. Longmans, London (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hakkaki-Fard, A., Timofeev, E. (2012). Determination of the Sonic Point in Unsteady Shock Reflections Using Various Techniques Based on Numerical Flowfield Analysis. In: Kontis, K. (eds) 28th International Symposium on Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25685-1_98

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25685-1_98

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25684-4

  • Online ISBN: 978-3-642-25685-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics