Skip to main content

Experimental and Numerical Investigations of the Inclined Air/SF6 Interface Instability under Shock Wave

  • Conference paper
  • 1883 Accesses

Introduction

When the material interface separating two different fluids is accelerated by shock wave, a hydrodynamic instability happens, which is well known as the Richtmyer-Meshkov instability (RMI) [1,2]. The physical mechanism for the occurrence of RMI is the deposition of baroclinic vorticity produced by the misalignment of the pressure gradient of the shock wave and the local density gradient at the interface (i.e.\(\nabla\rho\times\nabla\rho\neq\) 0). Another type of instability is called the Kelvin-Helmholts instability (KHI) [3], which is because of the presence of tangential velocity jump at the interface. At late times of the RMI developing, because of the larger velocity difference at both sides of the spike and at the tip of the bubble, the KHI also starts to develop. The RMI is of importance in a wide range from man-made applications to natural phenomena such as inertial confinement fusion (ICF) and astrophysics. The KHI also has a prominent significance in plasma flow, radioactively driven molecular clouds [4], etc. So they have gained much attention for many years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Richtmyer, R.D.: Communications on Pure and Applied Mathematics 13(2) (1960)

    Google Scholar 

  2. Meshkov, E.E.: Soviet Fluid Dynamics 4(5) (1969)

    Google Scholar 

  3. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability, p. 480. Oxford University Press (1961)

    Google Scholar 

  4. Committee on High Energy Density Plasma Physics, Plasma Science Committee, Board on Physics and Astronomy, Division on Engineering and Physical Science. Frontiers in High Energy Density Physics. The National Academies Press (2001)

    Google Scholar 

  5. Dimonte, G., Schneider, M.B.: Physical Review E 54(4) (1996)

    Google Scholar 

  6. Jacobs, J.W., Sheeley, J.M.: Physics of Fluids 8(2) (1996)

    Google Scholar 

  7. Houas, L., Jourdan, G., Schwaederlé, L., et al.: Shock Waves 12(5) (2003)

    Google Scholar 

  8. Hosseini, S.H.R., Takayama, K.: Physics of Fluids 17(8) (2005)

    Google Scholar 

  9. Holder, D.A., Barton, C.J.: Shock tube Richtmyer-Meshkov experiments: inverse chevron and half height. In: Dalziel, S.B. (ed.) 9th IWPCTM, p. 365. Cambridge University Press (2004)

    Google Scholar 

  10. Mügler, C., Gauthier, S.: Physics of Fluids 12(7) (2000)

    Google Scholar 

  11. Cohen, R.H., Dannevik, W.P., Dimits, A.M., et al.: Physics of Fluids 14(10) (2002)

    Google Scholar 

  12. Bates, K.R., Nikiforakis, N., Holder, D.: Physics of Fluids 19(3) (2007)

    Google Scholar 

  13. Colella, P., Woodward, P.R.: Journal of Computational Physics 54 (1984)

    Google Scholar 

  14. Hirt, C.W., Nichols, B.D.: Journal of Computational Physics  9(1) (1981)

    Google Scholar 

  15. Wang, T., Bai, J.S., Li, P., et al.: Science in China Series G 53(5) (2010)

    Google Scholar 

  16. Bai, J.S., Liu, J.H., Wang, T., et al.: Physical Review E 81(5) (2010)

    Google Scholar 

  17. Vreman, A.W.: Physics of Fluids 16(10) (2004)

    Google Scholar 

  18. Lilly, D.K.: In: Goldstine, H.H. (ed.) Proceedings of IBM Scientific Computing Symposium on Environmental Sciences, Yorktown Heights, New York, p. 195 (1967)

    Google Scholar 

  19. Wang, J.H.: Two-Dimensional Nonsteady Flow and Shock Waves, p. 74. Science Press (1994) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, T., Liu, J.H., Bai, J.S., Li, P., Liu, K. (2012). Experimental and Numerical Investigations of the Inclined Air/SF6 Interface Instability under Shock Wave. In: Kontis, K. (eds) 28th International Symposium on Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25685-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25685-1_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25684-4

  • Online ISBN: 978-3-642-25685-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics