Skip to main content

Antiforce Current Bearing Waves

  • Conference paper
28th International Symposium on Shock Waves

Introduction

In the case of breakdown waves in a long discharge tube, near the electrode where the potential gradient in the gas is greatest, small quantity of gas is ionized. Analysis of the spectrum of radiation emitted from electric breakdown of a gas reveals no Doppler shift, indicating that the ions have negligible motion. The large difference in mobilities of positive ions and electrons causes establishment of a space charge and consequently a space charge field. The electric field accelerates the free electrons until they aquire enough of energy for collisional ionization of the gas. Since the ionized gas is a conductor and it can not hold internal electric filed, the electric field which has its maximum value at the interface between the ionized gas and the neutral gas has to reduce to a negligible value at the trailing edge of the wave.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fowler, R.G., Hemmati, M., Scott, R.P., Parsenajadh, S.: The Physics of Fluids 27, 6 (1984)

    Article  Google Scholar 

  2. Fujita, K., Sato, S., Abe, T.: Journal of Thermodynamics and Heat Transfer 17 (2003)

    Google Scholar 

  3. Graves, D.B.: J. Appl. Phys. 62, 1 (1987)

    Article  Google Scholar 

  4. Hagelaar, G.J.M., Kroesen, G.M.W.: Journal of Computational Physics 159 (2000)

    Google Scholar 

  5. Hemmati, M.: Electron shock waves: speed range for antiforce waves. In: Proceedings of the 22nd International Symposium on Shock Waves, pp. 995–1000. Imperial College, London (1999)

    Google Scholar 

  6. McDaniel, E.W.: Collision phenomena in ionized gases. Wiley, New York (1964)

    Google Scholar 

  7. Rakov, V.A.: Positive and bipolar lightning discharges: a review. In: Proceedings of the 25th International Conference on Lightning Protection, pp. 103–108 (2000)

    Google Scholar 

  8. Sanmann, E., Fowler, R.G.: The Physics of Fluids 18, 11 (1975)

    Article  Google Scholar 

  9. Uman, M.A., Rakov, V.A., Schnetzer, K.J., Rambo, K.J., Crawford, D.E., Fisher, R.J.: J. Geophys. Res. 105, D12 (2000)

    Google Scholar 

  10. Wang, D., Rakov, V.A., Uman, M.A., Takagi, N., Watanabe, T., Crawford, D.E., Rambo, K.J., Schnetzer, G.H., Fisher, R.J., Kawasaki, Z.I.: J. J. Geophys. Res. 104, D2 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hemmati, M., Childs, W., Shojaei, H., Waters, D. (2012). Antiforce Current Bearing Waves. In: Kontis, K. (eds) 28th International Symposium on Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25685-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25685-1_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25684-4

  • Online ISBN: 978-3-642-25685-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics