Skip to main content

Identification of School-Aged Children with High Probability of Risk Behavior on the Basis of Easily Measurable Variables

  • Conference paper
Book cover Information Quality in e-Health (USAB 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7058))

Included in the following conference series:

  • 2308 Accesses

Abstract

The use of the methods of Knowledge Discovery in Databases (KDD) in the domain of public health is still topical. One of the major reasons for its increasing use is the need for an efficient processing of the increasing volumes of data. The aim of our contribution is to analyze the possibilities of the usage of these methods to identify the groups of school-aged children with a high probability of risky behavior. The obtained results are useful for the formation of models applicable for more efficient identification of target groups of prevention programs. In this work we use Slovak national dataset from the international study Health Behaviour in School-Aged Children. The used machine learning methods were Support Vector Machine, Naïve Bayes Classifier and the J48 machine learning algorithm. The results suggest promising possibilities for the use of the machine learning methods to develop classification models useful for public health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li, J., Fu, A.W.-c., Fahey, P.: Efficient discovery of risk patterns in medical data. Artificial intelligence in Medicine 45, 77–89 (2009)

    Article  Google Scholar 

  2. Sibbritt, D., Gibberd, R.: The Effective Use of a Summary Table and Decision Tree Methodology to Analyze Very Large Healthcare Datasets. Health Care Management Science 7, 163–171 (2004)

    Article  Google Scholar 

  3. Expert Health Data Programming, http://www.ehdp.com/links/index.htm

  4. Holmes, J.H., Durbin, D.R., Winston, F.K.: Discovery of predictive models in an injury surveillance database: an application of data mining in clinical research. In: Proc. AMIA Symp., pp. 359–363 (2000)

    Google Scholar 

  5. Orlygsdottir, B.: Using knowledge discovery to identify potentially useful patterns of health promotion behavior of 10–12 year old Icelandic children. The University of Iowa (2008)

    Google Scholar 

  6. Flouris, A.D., Duffy, J.: Applications of Artificial Intelligence Systems in the Analysis of Epidemiological Data. European Journal of Epidemiology 21, 167–170 (2006)

    Article  Google Scholar 

  7. Poynton, M.R., McDaniel, A.M.: Classification of smoking cessation status with a backpropagation neural network. Journal of Biomedical Informatics 39, 680–686 (2006)

    Article  Google Scholar 

  8. Lemon, S., Roy, J., Clark, M., Friedmann, P., Rakowski, W.: Classification and regression tree analysis in public health: Methodological review and comparison with logistic regression. Annals of Behavioral Medicine 26, 172–181 (2003)

    Article  Google Scholar 

  9. MacDowell, M., Somoza, E., Rothe, K., Fry, R., Brady, K., Bocklet, A.: Understanding birthing mode decision making using artificial neural networks. Medical Decision Making 21, 433–443 (2001)

    Article  Google Scholar 

  10. Goodwin, L.K., Iannacchione, M.A., Hammond, W.E., Crockett, P., Maher, S., Schlitz, K.: Data Mining Methods Find Demographic Predictors of Preterm Birth. Nursing Research 50, 340–345 (2001)

    Article  Google Scholar 

  11. Bertsimas, D., Bjarnadóttir, M.V., Kane, M.A., Kryder, J.C., Pandey, R., Vempala, S., Wang, G.: Algorithmic Prediction of Health-Care Costs. Operations Research 56, 1382–1392 (2008)

    Article  MATH  Google Scholar 

  12. Yu, W., Liu, T., Valdez, R., Gwinn, M., Khoury, M.: Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Medical Informatics and Decision Making 10, 16 (2010)

    Article  Google Scholar 

  13. Health Behaviour in School-Aged Children, http://www.hbsc.org/index.html

  14. Vapnik, V.: The nature of statistical learning theory. Springer-Verlag New York, Inc. (1995)

    Google Scholar 

  15. Abe, S.: Support Vector Machines for Pattern Classification (Advances in Pattern Recognition). Springer-Verlag New York, Inc. (2005)

    Google Scholar 

  16. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011)

    Article  Google Scholar 

  17. Paralic, J., Furdik, K., Tutoky, G., Bednar, P., Sarnovsky, M., Butka, P., Babic, F.: Dolovanie znalostí z textov. Equilibria, s.r.o. (2010)

    Google Scholar 

  18. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc. (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koncz, P., Paralic, J. (2011). Identification of School-Aged Children with High Probability of Risk Behavior on the Basis of Easily Measurable Variables. In: Holzinger, A., Simonic, KM. (eds) Information Quality in e-Health. USAB 2011. Lecture Notes in Computer Science, vol 7058. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25364-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25364-5_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25363-8

  • Online ISBN: 978-3-642-25364-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics