Skip to main content

Reactivity of Metal Carbene Clusters Pt n CH +2 and PtMCH +2 (M = Cu, Ag, Au, Pt, Rh) Toward O2 and NH3: A Computational Study

  • Chapter
  • First Online:
Computational Organometallic Chemistry

Abstract

DFT calculations at various levels have been used to elucidate the mechanistic details of dehydrogenation of methane by Pt cationic clusters and the reactivity of metal carbene clusters Pt4CH +2 and PtMCH +2 (M = Cu, Ag, Au, Pt, Rh) toward O2 and NH3. On the basis of theoretical analyses, the size dependence of reactivity and the cooperative effect of the bimetallic cluster in the dehydrogenation reactions of CH4 and NH3 have been discussed. Plausible mechanisms for the reactions of Pt4CH +2 with O2 and PtMCH +2 with NH3, leading to C–O and C–N bond couplings, respectively, have been proposed. The calculated results show good agreement with the experimental observations and provide a reasonable basis for understanding of the gas-phase chemistry of bare Pt-containing cationic clusters and their organometallic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lunsford JH (1995) Angew Chem Int Ed 43:970

    Google Scholar 

  2. Crabtree RH (1995) Chem Rev 95:987–1007

    CAS  Google Scholar 

  3. Schwarz H, Schroder D (2000) Pure Appl Chem 72(12):2319–2332

    CAS  Google Scholar 

  4. Martinho Simoes JA, Beauchamp JL (1990) Chem Rev 90:629

    Google Scholar 

  5. Weisshaar JC (1993) Acc Chem Res 26:213

    CAS  Google Scholar 

  6. Lersch M, Tilset M (2005) Chem Rev 105:2471

    CAS  Google Scholar 

  7. Achatz U, Berg C, Joos S, Fox BS, Beyer MK, Niedner-Schatteburg G, Bondybey VE (2000) Chem Phys Lett 320(1–2):53–58

    CAS  Google Scholar 

  8. Achatz U, Beyer M, Joos S, Fox BS, Niedner-Schatteburg G, Bondybey VE (1999) J Phys Chem A 103(41):8200–8206

    CAS  Google Scholar 

  9. Adhart C, Uggerud E (2006) Int J Mass Spectrom 249:191–198

    Google Scholar 

  10. Armentrout PB (2006) J Phys Chem A 110(27):8327–8338

    CAS  Google Scholar 

  11. Armentrout PB (2007) Organometallics 26(23):5486–5500

    CAS  Google Scholar 

  12. Armentrout PB, Shin S, Liyanage R (2006) J Phys Chem A 110(4):1242–1260

    CAS  Google Scholar 

  13. Armentrout PB, Sievers MR (2003) J Phys Chem A 107(22):4396–4406

    CAS  Google Scholar 

  14. Aschi M, Bronstrup M, Diefenbach M, Harvey JN, Schroder D, Schwarz H (1998) Angew Chem Int Ed 37(6):829–832

    CAS  Google Scholar 

  15. Bronstrup M, Schroder D, Schwarz H (1999) Organometallics 18(10):1939–1948

    Google Scholar 

  16. Koszinowski K, Schlangen M, Schroder D, Schwarz H (2004) Int J Mass Spectrom 237(1):19–23

    CAS  Google Scholar 

  17. Koszinowski K, Schroder D, Schwarz H (2003) J Am Chem Soc 125(13):3676–3677

    CAS  Google Scholar 

  18. Koszinowski K, Schroder D, Schwarz H (2004) Angew Chem Int Ed 43(1):121–124

    Google Scholar 

  19. Oncak M, Cao Y, Beyer MK, Zahradnik R, Schwarz H (2008) Chem Phys Lett 450(4–6):268–273

    CAS  Google Scholar 

  20. Schlangen M, Schroder D, Schwarz H (2007) Angew Chem Int Ed 46(10):1641–1644

    CAS  Google Scholar 

  21. Schlangen M, Schwarz H (2009) Dalton Trans 46:10155–10165

    Google Scholar 

  22. Schroder D, Schwarz H (2005) Can J Chem Revue Canadienne De Chimie 83(11):1936–1940

    Google Scholar 

  23. Schwarz H (2003) Angew Chem Int Ed 42(37):4442–4454

    CAS  Google Scholar 

  24. Almeida HJ, Duarte HA (2009) Organometallics 28:3203–3211

    Google Scholar 

  25. Di Santo E, Michelini MC, Russo N (2009) J Phys Chem A 113(52):14699–14705

    Google Scholar 

  26. Di Santo E, Michelini MD, Russo N (2009) Organometallics 28(13):3716–3726

    Google Scholar 

  27. Hanmura T, Ichihashi M, Kondow T (2002) J Phys Chem A 106(47):11465–11469

    CAS  Google Scholar 

  28. Hinrichs RZ, Willis PA, Stauffer HU, Schroden JJ, Davis HF (2000) J Chem Phys 112(10):4634–4643

    CAS  Google Scholar 

  29. Kummerlowe G, Balteanu I, Sun Z, Balaj OP, Bondybey VE, Beyer MK (2006) Int J Mass Spectrom 254(3):183–188

    Google Scholar 

  30. Lang SM, Bernhardt TM, Barnett RN, Landman U (2010) Angew Chem Int Ed 49(5):980–983

    CAS  Google Scholar 

  31. Li JH, Xia WS, Wan HL (2006) Chem J Chin Univ 27(12):2357–2361, in Chinese

    CAS  Google Scholar 

  32. Liu F, Zhang XG, Armentrout PB (2005) Phys Chem Chem Phys 7(5):1054–1064

    CAS  Google Scholar 

  33. Li FX, Armentrout PB (2006) J Chem Phys 125(13):133114

    Google Scholar 

  34. Michelini MC, Rivalta I, Sicilia E (2008) Theor Chem Acc 120(4–6):395–403

    CAS  Google Scholar 

  35. Michelini MD, Sicilia E, Russo N, Alikhani ME, Silvi B (2003) J Phys Chem A 107(24):4862–4868

    CAS  Google Scholar 

  36. Parke LG, Hinton CS, Armentrout PB (2006) Int J Mass Spectrom 254(3):168–182

    CAS  Google Scholar 

  37. Parke LG, Hinton CS, Armentrout PB (2007) J Phys Chem C 111(48):17773–17787

    CAS  Google Scholar 

  38. Parke LG, Hinton CS, Armentrout PB (2008) J Phys Chem A 112(42):10469–10480

    CAS  Google Scholar 

  39. Russo N, Sicilia E (2001) J Am Chem Soc 123(11):2588–2596

    CAS  Google Scholar 

  40. Sandig N, Koch W (1997) Organometallics 16(24):5244–5251

    Google Scholar 

  41. Schroder D (2010) Angew Chem Int Ed 49(5):850–851

    Google Scholar 

  42. Shayesteh A, Lavrov VV, Koyanagi GK, Bohme DK (2009) J Phys Chem A 113(19):5602–5611

    CAS  Google Scholar 

  43. Sicilia E, Russo N (2002) J Am Chem Soc 124(7):1471–1480

    CAS  Google Scholar 

  44. Sievers MR, Chen YM, Haynes CL, Armentrout PB (2000) Int J Mass Spectrom 195:149–170

    Google Scholar 

  45. Simon A, MacAleese L, Boissel P, Maitre P (2002) Int J Mass Spectrom 219(3):457–473

    CAS  Google Scholar 

  46. van Koppen PAM, Perry JK, Kemper PR, Bushnell JE, Bowers MT (1999) Int J Mass Spectrom 187:989–1001

    Google Scholar 

  47. Zhang GB, Li SH, Jiang YS (2003) Organometallics 22(19):3820–3830

    CAS  Google Scholar 

  48. Zhang Q, Kemper PR, Bowers MT (2001) Int J Mass Spectrom 210(1–3):265–281

    Google Scholar 

  49. Zhang Q, Kemper PR, Shin SK, Bowers MT (2001) Int J Mass Spectrom 204(1–3):281–294

    CAS  Google Scholar 

  50. Zhang XG, Liyanage R, Armentrout PB (2001) J Am Chem Soc 123(23):5563–5575

    CAS  Google Scholar 

  51. Zhang XH, Schwarz H (2009) Chemistry 15(43):11559–11565

    CAS  Google Scholar 

  52. Bauschlicher CW, Partridge H, Scuseria GE (1992) J Chem Phys 97:7471

    CAS  Google Scholar 

  53. Armentrout MM, Li FX, Armentrout PB (2004) J Phys Chem A 108:9660–9672

    CAS  Google Scholar 

  54. Westerberg J, Blomberg MRA (1998) J Phys Chem A 102:7303–7307

    CAS  Google Scholar 

  55. Husband J, Aguirre F, Thompson CJ, Laperle CM, Metz RB (2000) J Phys Chem A 104:2020–2024

    CAS  Google Scholar 

  56. Perry JK, Ohanessian G, Goddard WA (1994) Organometallics 13:1870–1877

    CAS  Google Scholar 

  57. Santo ED, Michelini MC, Russo N (2009) Organometallics 28:3716–3726

    Google Scholar 

  58. Schwarz H (1991) Angew Chem Int Ed 30:820

    Google Scholar 

  59. Eller K, Schwarz H (1991) Chem Rev 91:1121

    CAS  Google Scholar 

  60. Chen J, Xia F, Cao ZX, Lin MH (2007) J Mol Struct (Theochem) 808(1–3):9–16

    CAS  Google Scholar 

  61. Xia F, Cao ZX (2006) J Phys Chem A 110(33):10078–10083

    CAS  Google Scholar 

  62. Xia F, Cao ZX (2007) Organometallics 26(25):6076–6081

    CAS  Google Scholar 

  63. Xia F, Chen J, Cao ZX (2006) Chem Phys Lett 418(4–6):386–391

    CAS  Google Scholar 

  64. Xia F, Chen J, Zeng K, Cao ZX (2005) Organometallics 24(8):1845–1851

    CAS  Google Scholar 

  65. de Macedo LGM, Pyykko P (2008) Chem Phys Lett 462(1–3):138–143

    Google Scholar 

  66. Diefenbach M, Bronstrup M, Aschi M, Schroder D, Schwarz H (1999) J Am Chem Soc 121(45):10614–10625

    CAS  Google Scholar 

  67. Koszinowski K, Schroder D, Schwarz H (2003) Organometallics 22(19):3809–3819

    CAS  Google Scholar 

  68. Koszinowski K, Schroder D, Schwarz H (2003) Chemphyschem 4(11):1233–1237

    CAS  Google Scholar 

  69. Koszinowski K, Schroder D, Schwarz H (2003) J Phys Chem A 107(25):4999–5006

    CAS  Google Scholar 

  70. Koszinowski K, Schroder D, Schwarz H (2004) Organometallics 23(5):1132–1139

    CAS  Google Scholar 

  71. Xiao L, Wang LC (2007) J Phys Chem B 111(7):1657–1663

    CAS  Google Scholar 

  72. Heinemann C, Hertwig RH, Wesendrup R, Koch W, Schwarz H (1995) J Am Chem Soc 117:495–500

    CAS  Google Scholar 

  73. Pavlov M, Blomberg MRA, Siegbahm PEM, Wesendrup R, Heinemann C, Schwarz H (1997) J Phys Chem A 101:1567–1579

    CAS  Google Scholar 

  74. Trevor DJ, Cox DM, Kaldor A (1990) J Am Chem Soc 112:3742

    CAS  Google Scholar 

  75. Kaldor DA, Cox DM (1990) Pure Appl Chem 62:79

    CAS  Google Scholar 

  76. Carroll JJ, Weisshaar JC (1995) J Chem Phys 99:14388

    CAS  Google Scholar 

  77. Cui Q, Musaev DG, Morokuma K (1998) J Chem Phys 180:8418

    Google Scholar 

  78. Cui Q, Musaev DG, Morokuma K (1998) J Phys Chem A 102:6373

    CAS  Google Scholar 

  79. Dalmazio I, Duarte HA (2001) J Chem Phys 115:1747

    CAS  Google Scholar 

  80. Villaume S, Strich A, Ndoye CA, Daniel C, Perera SA, Bartlett RJ (2007) J Chem Phys 126:154318

    Google Scholar 

  81. Chiodo S, Rivalta I, Michelini MC, Russo N, Sicilia E, Ugalde JM (2006) J Phys Chem A 110:12501–12511

    CAS  Google Scholar 

  82. Ogliaro F, Loades SD, Cooper DL, Karadakov PB (2000) J Phys Chem A 104:7091–7098

    CAS  Google Scholar 

  83. Irikura KK, Beauchamp JL (1991) J Am Chem Soc 113:2769

    CAS  Google Scholar 

  84. Irikura KK, Beauchamp JL (1991) J Phys Chem 95:8344

    CAS  Google Scholar 

  85. Irikura KK, Goddard WA (1994) J Am Chem Soc 116:8733–8740

    CAS  Google Scholar 

  86. Taylor WS, Campbell AS, Barnas DF, Babcock LM, Linder CB (1997) J Phys Chem A 101:2654

    CAS  Google Scholar 

  87. Heinemann C, Wesendrup R, Schwarz H (1995) Chem Phys Lett 239:75

    CAS  Google Scholar 

  88. Wesendrup R, Schroder D, Schwarz H (1994) Angew Chem Int Ed 33:1174

    Google Scholar 

  89. Magnera TF, David DE, Michl J (1987) J Am Chem Soc 109:936

    CAS  Google Scholar 

  90. Jackson GS, White FM, Hammill CL, Clark RJ, Marshall AG (1997) J Am Chem Soc 119:7567

    CAS  Google Scholar 

  91. Becke AD (1993) J Chem Phys 98:5648

    CAS  Google Scholar 

  92. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    CAS  Google Scholar 

  93. Becke AD (1998) Phys Rev A 38:3098

    Google Scholar 

  94. Perdew JP, Chevary JA, Vosko S, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    CAS  Google Scholar 

  95. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2001) Gaussian 98, Revision A. 11, Gaussian, Inc., Pittsburgh PA

    Google Scholar 

  96. Amsterdam Density Functional (ADF) (2004) SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, Netherlands (www.scm.com)

  97. Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41

    CAS  Google Scholar 

  98. Boerrigter PM, te Velde G, Baerends EJ (1988) J Int Quantum Chem 33:87

    CAS  Google Scholar 

  99. Te Velde G, Baerends EJ (1992) J Chem Phys 99:84

    Google Scholar 

  100. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    CAS  Google Scholar 

  101. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    CAS  Google Scholar 

  102. Wadt WR, Hay PJ (1985) J Chem Phys 82:284

    CAS  Google Scholar 

  103. Ehlers AW, Bohme M, Sapprich S, Gobbi A, Hollwarth A, Jonas V, Kohler KF, Stegmann R, Veldkamp A, Grenking G (1993) Chem Phys Lett 208:111

    CAS  Google Scholar 

  104. Dai D, Balasubramanian K (1994) J Chem Phys 100:4401

    CAS  Google Scholar 

  105. Cui Q, Djamaladdin G, Morokuma K (1998) J Chem Phys 108:8414

    Google Scholar 

  106. Lenthe EV, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597

    Google Scholar 

  107. Lenthe EV, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783

    Google Scholar 

  108. Minori A, Sayaka M, Takahito N, Kimihiko H (2005) Chem Phys 311:129

    Google Scholar 

  109. Spain EM, Morse MD (1992) J Chem Phys 97:4605

    CAS  Google Scholar 

  110. Perdew JP (1986) Phys Rev B 33:8822

    Google Scholar 

  111. Airola MB, Morse MD (2002) J Chem Phys 116:1313

    CAS  Google Scholar 

  112. Taylor S, Lemire GW, Hamrick Y, Fu ZW, Morse MD (1988) J Chem Phys 89:5517

    CAS  Google Scholar 

  113. Bishea GA, Marak N, Morse MD (1991) J Chem Phys 95:5618

    CAS  Google Scholar 

  114. Bishea GA, Morse MD (1990) Chem Phys Lett 171:430

    CAS  Google Scholar 

  115. Balasubramanian K (1987) J Chem Phys 87:6573

    CAS  Google Scholar 

  116. Wang H, Carter EA (1992) J Phys Chem 96:1197

    CAS  Google Scholar 

  117. Dediu A (2000) Chem Res 100:543

    Google Scholar 

  118. Yanagisawa S, Tsuneda T, Hirao K (2001) J Comput Chem 22:1995

    CAS  Google Scholar 

  119. Fortunelli A (1999) J Mol Struct (Theochem) 493:233

    CAS  Google Scholar 

  120. Schwarz H (2004) Int J Mass Spectrom 237:75

    CAS  Google Scholar 

  121. Basch H, Musaev DG, Morokuma K (2002) J Mol Struct (Theochem) 586:35

    CAS  Google Scholar 

  122. Harada M, Dexpert H (1996) J Chem Phys 100:565

    CAS  Google Scholar 

  123. Yuan D, Wang Y, Zeng Z (2005) J Chem Phys 122:114310

    CAS  Google Scholar 

  124. Ranasinghe YA, MacMahou TJ, Freiser BS (1991) J Phys Chem 95:7721

    CAS  Google Scholar 

  125. Fukui K (1970) J Phys Chem 74:4161

    CAS  Google Scholar 

  126. Fukui K (1981) Acc Chem Res 14:363

    CAS  Google Scholar 

  127. Dewar MJS (1951) Bull Soc Chem Fr 18:C71

    Google Scholar 

  128. Chatt J, Duncanson LA (1953) J Am Chem Soc 2939

    Google Scholar 

  129. Schroder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139

    CAS  Google Scholar 

  130. Shaik S, Danovich D, Fiedler A, Schröder D, Schwarz H (1995) Helv Chim Acta 78:1393

    CAS  Google Scholar 

  131. Danovich D, Shaik S (1997) J Am Chem Soc 119:1773

    CAS  Google Scholar 

  132. Litorija M, Ruscic B (1997) J Chem Phys 107:9852

    Google Scholar 

  133. Wittborn C, Wahlgren U (1995) Chem Phys 201:357

    CAS  Google Scholar 

  134. Yoshizawa K, Shiota Y, Yamabe T (1999) J Chem Phys 111:538

    CAS  Google Scholar 

  135. Yoshizawa K, Kagawa Y (2000) J Phys Chem A 104:9347

    CAS  Google Scholar 

Download references

Acknowledgments

Zexing Cao thanks his students and collaborators as cited in the references for their key contributions to this research. This work was supported by the National Science Foundation of China (20673087, 20733002, 20873105) and the Ministry of Science and Technology (2011CB808504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zexing Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cao, Z. (2012). Reactivity of Metal Carbene Clusters Pt n CH +2 and PtMCH +2 (M = Cu, Ag, Au, Pt, Rh) Toward O2 and NH3: A Computational Study. In: Wiest, O., Wu, Y. (eds) Computational Organometallic Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25258-7_7

Download citation

Publish with us

Policies and ethics