Skip to main content

The Ecology of Morphology: The Ecometrics of Locomotion and Macroenvironment in North American Snakes

  • Chapter
  • First Online:
Book cover Paleontology in Ecology and Conservation

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

Morphological traits that have a functional relationship with the environment can be used to study relationships between organisms and environments through time and across space. Dynamics of the trait-environment complex can be studied with ecometrics in individuals, in populations, and in communities. We explored how closely correlated three skeletal traits are with substrate use, and thus macrohabitat, among communities of snakes with the goal of better understanding how climate and macrovegetation might affect snake assemblages. Substrate use explained a large part of the variance in mean length-to-width ratio of vertebrae (R 2 = 0.66), PC1 of vertebral shape of a mid trunk vertebra (R 2 = 0.46), and relative tail length (R 2 = 0.71). Furthermore, mean relative tail length in snake assemblages across North America is strongly associated with ecoregions and vegetation cover (R 2 = 0.65 and 0.47, respectively). The close relationship with macrovegetation makes relative tail length a useful tool for predicting how snake assemblages will change as climates and biomes change across space or through time. This “ecometric” approach provides a medium-scale link between data collected from ecological studies over decades to data assembled from the fossil record over thousands, tens of thousands, or even millions of years. We show how historical vegetation changes between the early twentieth and twenty-first centuries at five preserves in North America resulted in ecometric changes that parallel the geographic distribution of relative tail length in snake communities across North America.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adalsteinsson SA, Branch WA, Trape S, Vitt LJ, Hedges SB (2009) Molecular phylogeny, classification, and biogeography of snakes of the family Leptotyphlopidae (Reptilia, Squamata). Zootaxa 2244:1–50

    Google Scholar 

  • Bailey RG (1998) Ecoregions map of North America. US Forest Serv Misc Publ 1548:1–10

    Google Scholar 

  • Bailey RG (2005) Identifying ecoregion boundaries. Environ Manage 34:S14–S16

    Article  Google Scholar 

  • Barnosky AD, Kaplan MH, Carrasco MA (2004) Assessing the effect of Middle Pleistocene climate change on Marmota populations from the Pit Locality. In: Barnosky AD (ed) Biodiversity response to climate change in the Middle Pleistocene. University of California Press, Berkeley

    Google Scholar 

  • Blain H-A, Bailon S, Cuenca-Bescós G, Bennàsar M, Rofes J, López-García JM, Huguet R, Arsuaga JL, Castro JMBd, Carbonell E (2010) Climate and environment of the earliest West European hominins inferred from amphibian and squamate reptile assemblages: Sima del Elefante Lower Red Unit, Atapuerca, Spain. Quaternary Sci Rev 29:3034–3044

    Article  Google Scholar 

  • Böhme M, Ilg A, Ossig A, Küchenhoff H (2006) New method to estimate paleoprecipitation using fossil amphibians and reptiles and the middle and late Miocene precipitation gradients in Europe. Geology 34:425–428

    Article  Google Scholar 

  • Brodman R, Cortwright S, Resetar A (2002) Historical changes of reptiles and amphibians of northwest Indiana fish and wildlife properties. Am Midl Nat 147:135–144

    Article  Google Scholar 

  • Burbrink FT (2005) Inferring the phylogenetic position of Boa constrictor among the Boinae. Mol Phylogenet Evol 34:167–180

    Article  Google Scholar 

  • Busby WH, Parmelee JR (1996) Historical changes in a herpetofaunal assemblage in the Flint Hills of Kansas. Am Midl Nat 135:81–91

    Article  Google Scholar 

  • Castoe TA, Parkinson CL (2006) Bayesian mixed models and the phylogeny of pitvipers (Viperidae: Serpentes). Mol Phylogenet Evol 39:91–110

    Article  Google Scholar 

  • Caumul R, Polly PD (2005) Phylogenetic and environmental components of morphological variation: skull, mandible, and molar shape in marmots (Marmota, Rodentia). Evolution 59:2460–2472

    Google Scholar 

  • Crother BI (1999) Phylogenetic relationships among West Indian Xenodontine snakes (Serpentes; Colubridae) with comments on the phylogeny of some mainland Xenodontines. Contemporary Herpetology 2:1–4

    Google Scholar 

  • Damuth JD, Jablonski D, Harris RM, Potts R, Stucky RK, Sues HD, Weishampel DB (1992) Taxon-free characterization of animal communities. In: Beherensmeyer AK, Damuth JD, diMichele WA, Potts R, Sues HD, Wing SL (eds) Terrestrial ecosystems through time: evolutionary paleoecology of terrestrial plants and animals. University of Chicago Press, Chicago

    Google Scholar 

  • Dryden IL, Mardia KV (1998) Statistical Shape Analysis. John Wiley and Sons, New York

    Google Scholar 

  • Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol 23:619–630

    Article  Google Scholar 

  • Eronen JT, Polly PD, Fred M, Damuth J, Frank DC, Mosbrugger V, Scheidegger C, Stenseth NC, Fortelius M (2010a) Ecometrics: the traits that bind the past and present together. Integr Zool 5:88–101

    Article  Google Scholar 

  • Eronen JT, Puolamäki K, Liu L, Lintulaakso K, Damuth J, Janis C, Fortelius M (2010b) Precipitation and large herbivorous mammals I: estimates from present-day communities. Evol Ecol Res 12:217–233

    Google Scholar 

  • Eronen JT, Puolamäki K, Liu L, Lintulaakso K, Damuth J, Janis C, Fortelius M (2010c) Precipitation and large herbivorous mammals II: applications to fossil data. Evol Ecol Res 12:235–248

    Google Scholar 

  • Fischer AG (1960) Latitudinal variations in organic diversity. Evolution 14:64–81

    Article  Google Scholar 

  • Fitch HS (2006) Collapse of a fauna: reptiles and turtles of the University of Kansas natural history reservation. J Kans Herpetol 17:10–13

    Google Scholar 

  • Fortelius M, Eronen J, Jernvall J, Liu LP, Pushkina D, Rinne J, Tesakov A, Vislobokova I, Zhang ZQ, Zhou LP (2002) Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evol Ecol Res 4:1005–1016

    Google Scholar 

  • Franca FGR, Mesquita DO, Nogueira CC, Araujo AFB (2008) Phylogeny and ecology determine morphological structure in a snake assemblage in the Central Brazilian Cerrado. Copeia 1:23–38

    Article  Google Scholar 

  • Garland T, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292

    Google Scholar 

  • Gower JC (1975) Generalized Procrustes analysis. Psychometrika 40:33–51

    Article  Google Scholar 

  • Guyer C, Donnelly MA (1990) Length–Mass relationships among an assemblage of tropical snakes in Costa Rica. J Trop Ecol 6:65–76

    Article  Google Scholar 

  • Head JJ (2010) Climatic inferences from extant and fossil reptiles: toward a metabolic paleothermometer. AGU fall meeting abstracts, vol #B51F-0412. Smithsonian/NASA Astrophysics Data System

    Google Scholar 

  • Head JJ, Bloch JI, Hastings AK, Bourque JR, Cadena EA, Herrera FA, Polly PD, Jaramillo CA (2009) Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature 457:715–718

    Article  Google Scholar 

  • Helmus MR, Savage K, Diebel MW, Maxted JT, Ives AR (2007) Separating the determinants of phylogenetic community structure. Ecol Lett 10:917–925

    Article  Google Scholar 

  • Holm PA (2008) Phylogenetic biology of the burrowing snake tribe Sonorini (Colubridae). University of Arizona, Tuscon

    Google Scholar 

  • Hossack BR, Corn PS, Pilliod DS (2005) Lack of significant changes in the herpetofauna of Theodore Roosevelt National Park, North Dakota, since the 1920s. Am Midl Nat 154:423–432

    Article  Google Scholar 

  • Jablonski D (2008) Species selection: theory and data. Annu Rev Ecol Evol Syst 39:501–524

    Article  Google Scholar 

  • Jadin RC, Gutberlet RL, Smith EN (2010) Phylogeny, evolutionary morphology, and hemipenis descriptions of the Middle American jumping pitvipers (Serpentes: Crotalinae: Atropoides). J Zool Syst Evol Res 48:360–365

    Article  Google Scholar 

  • Janis CM, Fortelius M (1988) On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biol Rev Camb Philos Soc 63:197–230

    Article  Google Scholar 

  • Jenks GF (1977) Optimal data classification for choropleth maps. University of Kansas Department of Geography Occasional Papers 2:1–24

    Google Scholar 

  • Johnson RG (1955) The adaptive and phylogenetic significance of vertebral form in snakes. Evolution 9:367–388

    Article  Google Scholar 

  • King RB (2008) Sexual dimorphism in snake tail length: sexual selection, natural selection, or morphological constraint? Biol J Linn Soc 38:133–154

    Article  Google Scholar 

  • Kozak KH, Larson A, Bonett RM, Harmon LJ (2005) Phylogenetic analysis of ecomorphological divergence, community structure, and diversification rates in dusky salamanders (Plethodontidae: Desmognathus). Evolution 59:2000–2016

    Google Scholar 

  • Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170:271–283

    Article  Google Scholar 

  • Lawing AM, Polly PD (2011) Pleistocene climate, phylogeny, and climate envelope models: an integrative approach to better understand species’ response to climate change. PLoS One 16:e28554

    Article  Google Scholar 

  • Lawson R, Slowinski JB, Crother BI, Burbrink FT (2005) Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. Mol Phylogenet Evol 37:581–601

    Article  Google Scholar 

  • Lindell LE (1994) The evolution of vertebral number and body size in snakes. Funct Ecol 8:708–719

    Article  Google Scholar 

  • Lindsey AA, Crankshaw WB, Qadir SA (1965) Soil relations and distribution map of the vegetation of presettlement Indiana. Bot Gazette 126:155–163

    Article  Google Scholar 

  • Little SA, Kembel SW, Wilf P (2010) Paleotemperature proxies from leaf fossils reinterpreted in light of evolutionary history. PLoS One 5:e15161

    Article  Google Scholar 

  • Maguire KC, Stigall AL (2009) Using ecological niche modeling for quantitative biogegoraphic analysis: a case study of Miocene and Pliocene Equinae in the Great Plains. Paleobiology 35:587–611

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG, Li BL (2005) Gigantism, temperature and metabolic rate in terrestrial poikilotherms. Proc R Soc B Biol Sci 272:2325–2328

    Article  Google Scholar 

  • Martins M, Araujo MS, Sawaya RJ, Nunes R (2001) Diversity and evolution of macrohabitat use, body size and morphology in a monophyletic group of Neotropical pitvipers (Bothrops). J Zool 254:529–538

    Article  Google Scholar 

  • Matthews E (1983) Global vegetation and land use: new high-resolution data bases for climate studies. J Clim Appl Meteorol 22:474–487

    Article  Google Scholar 

  • Matthews E (1984) Prescription of land-surface boundary conditions in GISS GCM II: a simple method based on high-resolution vegetation datasets NASA TM-86096. National Aeronautics and Space Administration, Washington, DC

    Google Scholar 

  • Maurer BA (1999) Untangling ecological complexity: the macroscopic perspective. University of Chicago Press, Chicago

    Google Scholar 

  • McGill B (2010) Matters of scale. Science 328:575

    Article  Google Scholar 

  • Mosbrugger V, Utescher T, Dilcher DL (2005) Cenozoic continental climatic evolution of Central Europe. Proc Natl Acad Sci USA 102:14964–14969

    Article  Google Scholar 

  • Mullin SJ, Seigel RA (2009) Sankes: ecology and conservation. Cornell University Press, Ithaca

    Google Scholar 

  • Myers CE, Lieberman BS (2010) Sharks that pass in the night: using geographical information systems to investigate competition in the Cretaceous Western Interior Seaway. Proc R Soc B Biol Sci 278:681–689

    Article  Google Scholar 

  • Olalla-Tarraga MA, Rodriguez MA, Hawkins BA (2006) Broad-scale patterns of body size in squamate reptiles of Europe and North America. J Biogeogr 33:781–793

    Article  Google Scholar 

  • Polly PD (2003) Paleophylogeography: the tempo of geographic differentiation in marmots (Marmota). J Mammal 84:369–384

    Article  Google Scholar 

  • Polly PD (2010) Tiptoeing through the trophics: geographic variation in carnivoran locomotor ecomorphology in relation to environment. In: Goswami A, Friscia A (eds) Carnivoran evolution: new views on phylogeny, form, and function. Cambridge studies in morphology and molecules: new paradigms in evolutionary biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Polly PD, Eronen JT (2011) Mammal associations in the Pleistocene of Britain: implications of ecological niche modelling and a method for reconstrucing palaeoclimate. In: Ashton N, Lewis SG, Stringer C (eds) The ancient human occupation of Britain. Elsevier, New York

    Google Scholar 

  • Polly PD, Eronen JT, Fred M, Dietl GP, Mosbrugger V, Scheidegger C, Frank DC, Damuth J, Stenseth NC, Fortelius M (2011) History matters: ecometrics and integrative climate change biology. Proc R Soc B Biol Sci 278:1131–1140

    Article  Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on palent physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Article  Google Scholar 

  • Pyron RA, Burbrink FT, Colli GR, Montes de Oca AN, Vitt LJ, Kuczynski CA, Wiens JJ (2011) The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Mol Phylogenet Evol 58:329–342

    Article  Google Scholar 

  • Reading CJ, Luiselli LM, Akani GC, Bonet X, Amori G, Ballouard JM, Filippi E, Naulleau G, Pearson D, Rugiero L (2010) Are snake populations in widespread decline? Biol Lett 6:777–780

    Article  Google Scholar 

  • Ricklefs RE, Miles DB (1994) Ecological and evolutionary inferences form morphology: an ecological perspective. In: Wainwright PC, Reilly SM (eds) Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago

    Google Scholar 

  • Rodríguez MA, Belmontes JA, Hawkins BA (2005) Energy, water and large-scale patterns of reptile and amphibian species richness in Europe. Acta Oecol 28:65–70

    Article  Google Scholar 

  • Rohlf FJ, Slice D (1990) Extentions of the Procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59

    Article  Google Scholar 

  • Row LW, Hastings DA (1994) TerrainBase worldwide digital terrain data (release 1.0). National Oceanic and Atmospheric Administration, National Geophysical Data Center, Boulder

    Google Scholar 

  • Sanders KL, Mumpuni AH, Head JJ, Gower DJ (2010) Phylogeny and divergence times of filesnakes (Acrochordus): inferences from morphology, fossils and three molecular loci. Mol Phylogenet Evol 56:857–867

    Article  Google Scholar 

  • Scheiter S, Higgins SI (2009) Impacts of climate change on the vegetation of Africa: an adptive dynamic vegetation modelling approach. Global Change Biol 15:2224–2246

    Article  Google Scholar 

  • Sigala Rodríguez JJ, Greene HW (2009) Landscape change and conservation priorities: Mexican herpetofaunal perspectives at local and regional scales. Revista Mexicana de Biodiversidad 80:231–240

    Google Scholar 

  • Slowinski JB, Lawson R (2002) Snake phylogeny: evidence from nuclear and mitochondrial genes. Mol Phylogenet Evol 24:194–202

    Article  Google Scholar 

  • Sneath PH (1967) Trend-surface analysis of transformation grids. J Zool 151:65–122

    Article  Google Scholar 

  • Svenning J-C, Flojgaard C, Marske KA, Nógues Bravo D, Normand S (2011) Applications of species distribution modeling to paleobiology. Quaternary Sci Rev 30:2930–2947

    Article  Google Scholar 

  • Tingley MW, Beissinger SR (2009) Detecting range shifts from historical species occurrences: new perspectives on old data. Trends Ecol Evol 24:625–633

    Article  Google Scholar 

  • Varela S, Lobo JM, Hortal J (2011) Using species distribution models in paleobiogeography: a matter of data, predictors and concepts. Palaeogeogr Palaeoclimat Palaeoecol 310:451–463

    Article  Google Scholar 

  • Vidal N, Kindl SG, Wong A, Hedges SB (2000) Phylogenetic relationships of xenodontine snakes inferred from 12S and 16S ribosomal RNA sequences. Mol Phylogenet Evol 14:389–402

    Article  Google Scholar 

  • Webb JK, Shine R (1998) Using thermal ecology to predict retreat-site selection by an endangered snake species. Biol Conserv 86:233–242

    Article  Google Scholar 

  • Webb CT, Hoeting JA, Ames GM, Pyne MI, Poff NL (2010) A structure and dynamic framework to advance traits-based theory and prediction in ecology. Ecol Lett 13:267–283

    Article  Google Scholar 

  • Wiens JA, Bachelet D (2010) Matching the multiple scales of conservation with the multiple scales of climate change. Conserv Biol 24:51–62

    Article  Google Scholar 

  • Wiens JJ, Brandley MC, Reeder TW (2006) Why does a trait evolve multiple times within a clade? repeated evolution of snakelike body form in squamate reptiles. Evolution 60:123–141

    Google Scholar 

  • Wilcox TP, Zwickl DJ, Heath TA, Hillis DM (2002) Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Mol Phylogenet Evol 25:361–371

    Article  Google Scholar 

  • Williams JW, Blois JL, Shuman BN (2011) Extrinsic and instrinsic forcing of abrupt ecological change: case studies from the late Quaternary. J Ecol 99:664–677

    Article  Google Scholar 

  • Willis KJ, Gillson L, Brncic TM, Figueroa-Rangel BL (2005) Providing baselines for biodiversity measurement. Trends Ecol Evol 20:107–108

    Article  Google Scholar 

  • Willmott KM, Legates DR (1998) Global air temperature and precipitation: regridded monthly and annual climatologies (version 2.01). Center for Climatic Research, University of Delaware, Newark

    Google Scholar 

  • Wilson JA, Dhananjay MM, Peters SE, Head JJ (2010) Predation upon hatchling dinosaurs by a new snake from the late cretaceous of India. PLoS Biol 8:e1000322

    Article  Google Scholar 

  • Wolfe JA (1979) Temperature parameters of humid to mesic forests of Eastern Asia and relation to forests of other regions in the Northern Hemisphere and Australasia. US Geol Survey Prof Pap 1106:1–37

    Google Scholar 

Download references

Acknowledgments

Matthew Rowe, Laura Scheiber, and Susan Spencer at the William R. Adams Zooarchaeology Lab, Indiana University, Ron Richards at the Indiana State Museum, Eileen Westwig at the American Museum of Natural History, Phil Myers at the University of Michigan, Kevin DeQueiroz and George Zug at the Smithsonian Institution, Kevin Seymour at the Royal Ontarioi Museum, Colin McCarthy and David Gower at the Natural History Museum, London, Christopher J. Bell at the University of Texas at Austin, Heidi Price-Thomas at Queen Mary, University of London, Carl Franklin and Jonathan Campbell at University of Texas at Arlington and Bill Stanley and Harold Voris at the Field Museum of Natural History provided specimens in their care. Christopher J. Bell, Jussi Eronen, Mikael Fortelius, Robert Guralnick, Anne Hereford, Steve Le Comber, Norman Macleod, Jesse Meik, and Eric Smith discussed or assisted with parts of this work. This work was supported by Indiana University and a grant from the US National Science Foundation (EAR-0843935) and is a contribution to the Integrated Climate Change Biology programme (iCCB) of the International Union of Biological Sciences (IUBS). Early data collection was supported by a NSF Biological Informatics Postdoctoral Fellowship to JJH (NSF 98–162, 0204082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Michelle Lawing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lawing, A.M., Head, J.J., Polly, P.D. (2012). The Ecology of Morphology: The Ecometrics of Locomotion and Macroenvironment in North American Snakes. In: Louys, J. (eds) Paleontology in Ecology and Conservation. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25038-5_7

Download citation

Publish with us

Policies and ethics