Skip to main content

Ecology Needs a Paleontological Perspective

  • Chapter
  • First Online:

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

General ecological theories have paid scant attention to the information preserved in the fossil record. However, in order for an ecological theory to be truly general, it must hold in any ecosystem at any point in time. Here, we make the case that all modern ecological theories should be tested in geological time. We explore some of the limitations of the fossil record when examined in light of modern ecology. While there are fundamental differences between the way modern ecosystems and fossil ones are studied, we demonstrate that comparisons between the two are not impossible. We present three major research areas where fossil information has been successfully used to inform modern ecological thought; namely community ecology, biogeography and extinction studies. These examples also serve to highlight ecological issues that could not have been conceived purely on the basis of modern data. We advocate a much stronger interaction between modern ecologists and paleontologists in addressing present and future ecological questions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allmon WD, Bottjer DJ (2001) Evolutionary paleoecology: the ecological context of macroevolutionary change. Columbia University Press, New York

    Google Scholar 

  • Archer M, Hand S, Godthelp H (1991) Back to the future: the contribution of palaeontology to the conservation of Australian forest faunas. In: Lunney D (ed) Conservation of Australia’s forest fauna. Royal Zoological Society of New South Wales, Sydney

    Google Scholar 

  • Bambach RK, Bennington JB (1996) Do communities evolve? A major question in evolutionary paleoecology. In: Jablonski D, Erwin DH, Lipps JH (eds) Evolutionary paleobiology. University of Chicago Press, Chicago

    Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the earth’s sixth mass extinction already arrived? Nature 471:51–57

    Article  Google Scholar 

  • Beerling D (2007) The emerald planet. Oxford University Press, New York

    Google Scholar 

  • Beerling DJ, Lomax BH, Upchurch GR, Nichols DJ, Pillmore CL, Handley LL, Scrimgeour CM (2001) Evidence for the recovery of terrestrial ecosystems ahead of marine primary production following a biotic crisis at the Cretaceous-Tertiary boundary. J Geol Soc Lond 158:737–740

    Article  Google Scholar 

  • Begon M, Townsend CR, Harper JL (2006) Ecology; from individuals to ecosystems, 4th edn. Blackwell, Malden

    Google Scholar 

  • Beherensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues H-D, Wing SL (1992) Terrestrial ecosystems through time. University of Chicago Press, Chicago

    Google Scholar 

  • Behrensmeyer AK (1975) The taphonomy and paleoecology of plio-pleistocene vertebrate assemblages of Lake Rudolf, Kenya. Bull Mus Comp Zool 146:473–578

    Google Scholar 

  • Behrensmeyer AK, Hill AP (1980) Fossils in the making. University of Chicago Press, Chicago

    Google Scholar 

  • Bennington JB, Aronson MFJ (2012) Reconciling scale in paleontological and neontological data: dimensions of time, space and taxonomy. In: Louys J (ed) Paleontology in ecology and conservation. Springer, Heidelberg

    Google Scholar 

  • Bennington JB, DiMichele WA, Badgley CE et al (2009) Critical issues of scale in paleoecology. Palaios 24:1–4

    Article  Google Scholar 

  • Birks HJB (1996) Contributions of quaternary palaeoecology to nature conservation. J Veg Sci 7:89–98

    Article  Google Scholar 

  • Bowler PJ (1992) The Fontana history of the environmental sciences. Fontana Press, London

    Google Scholar 

  • Bowler PJ, Morus IR (2005) Making modern science; a historical survey. University of Chicago Press, Chicago

    Google Scholar 

  • Brain CK (1969) The contribution of Namib desert Hottentots to an understanding of Australo- pithecine bone accumulations. Sci Pap Namib Desert Res Station 39:13–22

    Google Scholar 

  • Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington, Washington

    Book  Google Scholar 

  • Colinvaux P (1993) Ecology, 2nd edn. Wiley, New York

    Google Scholar 

  • Colinvaux PA, De Oliveira PE (2000) Paleoecology and climate of the Amazon basin during the last glacial cycle. J Quat Sci 15:347–356

    Article  Google Scholar 

  • Colinvaux PA, De Oliveira PE, Moreno JE, Miller MC, Bush MB (1996) A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 27:85–88

    Article  Google Scholar 

  • Crame JA (2001) Taxonomic diversity gradients through geological time. Divers Distrib 7:175–189

    Google Scholar 

  • DiMichele WA, Behrensmeyer AK, Olszewski TD, Labandeira CC, Pandolfi JM, Wing SL, Bobe R (2004) Long-term stasis in ecological assemblages: evidence from the fossil record. Ann Rev Ecol Evol Syst 35:285–322

    Article  Google Scholar 

  • Ditchfield P, Harrison T (2011) Sedimentology, lithostratigraphy, and depositional history of the Laetoli area. In: Harrison T (ed) Paleontology and geology of Laetoli: human evolution in context, vol 1, Geology, geochronology, paleoecology and paleoenvironment. Springer, Dordrecht

    Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND, Wood RA, Erwin DH (2008) Compilation and network analyses of Cambrian food webs. PLoS Biol 6:e102

    Article  Google Scholar 

  • Efremov JA (1940) Taphonomy: new branch of palaeontology. Pan-Am Geol 74:81–93

    Google Scholar 

  • Elton C (1927) Animal ecology. Sidgwick and Jackson, London

    Google Scholar 

  • Elton S (2008) The environmental context of human evolutionary history in Eurasia and Africa. J Anat 212:377–393

    Article  Google Scholar 

  • Emlen JM (1977) Ecology: an evolutionary approach. Addison-Wesley, Massachusetts

    Google Scholar 

  • Falcon-Lang HJ, Cantrill DJ, Nichols GJ (2001) Biodiversity and terrestrial ecology of a mid-cretaceous, high-latitude floodplain, Alexander Island, Antarctica. J Geol Soc Lond 158:709–724

    Article  Google Scholar 

  • Flessa KW, Cutler AH, Meldahl KH (1993) Time and taphonomy: quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology 19:266–286

    Google Scholar 

  • Flessa KW, Jackson ST, Aber JD et al (2005) The geological record of ecological dynamics: understanding the biotic effects of future environmental change. Committee on the Geologic Record of Biosphere Dynamics/National Academies Press, Washington, DC

    Google Scholar 

  • Free A, Barton NH (2007) Do evolution and ecology need the Gaia hypothesis? Trends Ecol Evol 22:611–619

    Article  Google Scholar 

  • Gaston KJ, Williams PH (1993) Mapping the world’s species – the higher taxon approach. Biodivers Lett 1:2–8

    Article  Google Scholar 

  • Gleason H (1926) The individualistic concept of the plant association. Bull Torrey Botanical Club 53:7–26

    Article  Google Scholar 

  • Gould SJ (1985) The paradox of the first tier: an agenda for paleobiology. Paleobiology 11:2–12

    Google Scholar 

  • Graham RW, Grimm EC (1990) Effects of global climate change on the patterns of terrestrial biological communities. Trends Ecol Evol 5:289–292

    Article  Google Scholar 

  • Green RE, Krause J, Ptak SE, Briggs AW, Ronan MT, Simons JF, Du L, Egholm M, Rothberg JM, Paunovic M, Pääbo S (2006) Analysis of one million base pairs of Neanderthal DNA. Nature 444:330–336

    Article  Google Scholar 

  • Hadly EA (1999) Fidelity of terrestrial fossils to a modern ecosystem. Palaeogeogr Palaeoclimatol Palaeoecol 149:389–409

    Article  Google Scholar 

  • Haffer J (1969) Speciation in Amazonian forest birds. Science 165:131–137

    Article  Google Scholar 

  • Hawkins BA, Diniz-Filho JAF, Jaramillo CA, Soeller SA (2007) Climate, niche conservatism and the global bird diversity gradient. Am Nat 170:s16–s27

    Article  Google Scholar 

  • Hill A (1981) Why study palaeoecology? Nature 293:340

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, New York

    Google Scholar 

  • Huntley B (1990) Dissimilarity mapping between fossil and contemporary pollen spectra in Europe for the past 13,000 years. Quat Res 33:360–376

    Article  Google Scholar 

  • Huntley B (1991) Historical lessons for the future. In: Spellerberg IF, Goldsmith FB, Morris MG (eds) The scientific management of temperate communities for conservation. Blackwells, Oxford

    Google Scholar 

  • Huntley B (1996) Quaternary palaeoecology and ecology. Quat Sci Rev 15:591–606

    Article  Google Scholar 

  • Jablonski D, Erwin DH, Lipps JH (1996) Evolutionary paleobiology. University of Chicago Press, Chicago

    Google Scholar 

  • Jablonski D, Roy K, Valentine JW (2006) Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102–106

    Article  Google Scholar 

  • Jacobs BF (2002) Estimation of low latitude paleoclimates using fossil angiosperm leaves: examples from the Miocene Tugen Hills, Kenya. Paleobiology 28:99–421

    Google Scholar 

  • Jacobs BF, Winkler DA (1992) Taphonomy of a middle Miocene autochthonous forest assemblage, Ngorora formation, central Kenya. Palaaeogeogr Palaeoclimatol Palaeoecol 99:31–40

    Article  Google Scholar 

  • Kingston JD, Jacobs BF, Hill A, Deino A (2002) Stratigraphy, age and environments of the late Miocene Mpesida Beds, Tugen Hills, Kenya. J Hum Evol 42:95–116

    Article  Google Scholar 

  • Kingston JD, Deino AL, Edgar RK, Hill A (2007) Astronomically forced climate change in the Kenyan Rift Valley 2.7–2.55 Ma: implications for the evolution of early hominin ecosystems. J Hum Evol 53:487–503

    Article  Google Scholar 

  • Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170:271–283

    Article  Google Scholar 

  • Krebs CJ (2009) Ecology, 6th edn. Benjamin Cummings, San Francisco

    Google Scholar 

  • Louys J (2007) Limited effect of the quaternary’s largest super-eruption (Toba) on land mammals from Southeast Asia. Quaternary Sci Rev 26:3108–3117

    Article  Google Scholar 

  • Louys J (2011) Mammal community structure of Sundanese fossil assemblages from the late Pleistocene, and a discussion on the ecological effects of the Toba eruption. Quat Int. doi:10.1016/j.quaint.2011.07.027

  • Louys J (2012) Paleoecology and conservation paleobiology: future directions. In: Louys J (ed) Paleontology in ecology and conservation. Springer, Heidelberg

    Google Scholar 

  • Louys J, Meijaard E (2010) Palaeoecology of Southeast Asian megafauna-bearing sites from the Pleistocene and a review of environmental changes in the region. J Biogeogr 37:1432–1449

    Google Scholar 

  • Louys J, Aplin K, Beck RMD, Archer M (2009a) Cranial anatomy of Oligo-Miocene koalas (Diprotodontia: Phascolarctidae): stages in the evolution of an extreme leaf-eating specialization. J Vertebr Paleontol 29:981–992

    Article  Google Scholar 

  • Louys J, Bishop LC, Wilkinson DM (2009b) Opening dialogue between the recent and the long ago. Nature 462:847

    Article  Google Scholar 

  • Lovelock JE (1979) Gaia. Oxford University Press, Oxford

    Google Scholar 

  • Lovelock JE (2003) The living earth. Nature 426:769–770

    Article  Google Scholar 

  • Lundelius EL (1983) Climatic implications of late Pleistocene and Holocene faunal associations in Australia. Alcheringa 7:125–149

    Article  Google Scholar 

  • Lyman RL (1994) Vertebrate taphonomy. Cambridge University Press, Cambridge

    Google Scholar 

  • Lyman RL, Houghton LE, Chambers AL (1992) The effect of structural density on Marmot skeletal part representation in archaeological sites. J Archaeol Sci 19:557–573

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Maynard Smith J (1984) Evolution: palaeontology at the high table. Nature 309:401–402

    Article  Google Scholar 

  • McGill BJ, Hadly EA, Maurer BA (2005) Community inertia of quaternary small mammal assemblages in North America. Proc Natl Acad Sci USA 102:16701–16706

    Article  Google Scholar 

  • McGowan AJ, Dyke GJ (2009) A surfeit of theropods in Moroccan Late Cretaceous? Comparing diversity estimates from field data and fossil shops. Geology 37:843–846

    Article  Google Scholar 

  • Medway L (1972) The quaternary era in Malesia. In: Ashton PS, Ashton M (eds) Transactions of the second aberdeen–hull symposium on Malesian ecology, Hull. University of Hull Department of Geography Miscellaneous Series 13, Hull

    Google Scholar 

  • Medway L (1977) The Niah excavations and an assessment of the impacts of early man on mammals in Borneo. Asian Perspect 20:51–69

    Google Scholar 

  • Mendoza M, Janis CM, Palmqvist P (2005) Ecological patterns in the trophic-size structure of large mammal communities: a ‘taxon-free’ characterization. Evol Ecol Res 7:505–530

    Google Scholar 

  • Meyer DL, Milson CV (2001) Microbial sealing in the biostratigraphy of Uintacrinus Lagerstätten in the Upper Cretaceous of Kansas and Colorado, USA. Palaios 16:535–546

    Google Scholar 

  • Miller W (2001) What’s in a name? Ecologic entities and the marine paleoecologic record. In: Allmon WD, Bottjer DJ (eds) Evolutionary paleoecology: the ecological context of macroevolutionary change. Columbia University Press, New York

    Google Scholar 

  • Mittelbach GG, Schemske DW, Cornell HV et al (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331

    Article  Google Scholar 

  • O’Regan HJ, Reynolds SC (2009) An ecological reassessment of the southern African carnivore guild: a case study from Member 4, Sterkfontein, South Africa. J Hum Evol 57:212–222

    Article  Google Scholar 

  • Olszewski TD, Erwin DH (2004) Dynamic response of Permian brachiopod communities to long-term environmental change. Nature 428:738–741

    Article  Google Scholar 

  • Pandolfi JM, Jackson JBC (2006) Ecological persistence interrupted in Caribbean coral reefs. Ecol Lett 9:818–826

    Article  Google Scholar 

  • Price GJ, Sobbe IH (2005) Pleistocene palaeoecology and environmental change on the Darling Downs, Southeastern Queensland, Australia. Mem Qld Mus 51:171–201

    Google Scholar 

  • Raup DM (1994) The role of extinction in evolution. Proc Natl Acad Sci USA 91:6758–6763

    Article  Google Scholar 

  • Reed KE (1997) Early hominid evolution and ecological change through the African Plio-Pleistocene. J Hum Evol 32:289–322

    Article  Google Scholar 

  • Reed KE (1998) Using large mammal communities to examine ecological and taxonomic structure and predict vegetation in extant and extinct assemblages. Paleobiology 24:384–408

    Google Scholar 

  • Renema W, Bellwood DR, Braga JC et al (2008) Hopping hotspots: global shifts in marine biodiversity. Science 321:654–657

    Article  Google Scholar 

  • Ricklefs RE (1990) Ecology, 3rd edn. WH Freeman, New York

    Google Scholar 

  • Rodríguez J (2004) Stability in Pleistocene Mediterranean mammalian communities. Palaeogeogr Palaeoclimatol Palaeoecol 207:1–22

    Article  Google Scholar 

  • Rodríguez J (2006) Structural continuity and multiple alternative stable states in middle Pleistocene European mammalian communities. Palaeogeogr Palaeoclimatol Palaeoecol 239:355–373

    Article  Google Scholar 

  • Rodwell JS (1991) British plant communities, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  • Rudwick MJS (2005) Bursting the limits of time: the reconstruction of geohistory in the age of revolution. University of Chicago Press, Chicago

    Google Scholar 

  • Rull V (1990) Quaternary palaeoecology and ecological theory. Orsis 5:91–111

    Google Scholar 

  • Rull V (2010) Ecology and palaeoecology: two approaches, one objective. Open Ecol J 3:1–5

    Article  Google Scholar 

  • Scott AC, Anderson JM, Anderson HM (2004) Evidence of plant-insect interactions in the Upper Triassic Molteno formation of South Africa. J Geol Soc Lond 161:401–410

    Article  Google Scholar 

  • Semken HA (1974) Micromammal distributions and migration during the Holocene. American Quaternary Association. In: Abstracts 3rd Biennial Meeting, Madison

    Google Scholar 

  • Sherratt TN, Wilkinson DM (2009) Big questions in ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Silvertown J, Poulton P, Johnston E, Edwards G, Heard M, Biss PM (2006) The park grass experiment 1856–2006: its contribution to ecology. J Ecol 94:801–814

    Article  Google Scholar 

  • Skovsted CB, Brock GA, Lindström A, Peel JS, Paterson JR, Fuller MK (2007) Early Cambrian record of failed durophagy and shell repair in an epibenthic mollusc. Biol Lett 3:314–317

    Article  Google Scholar 

  • Valentine JW (1974) Evolutionary palaeoecology of the marine biosphere. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Vegas-Villarrúbia T, Rull V, Montoya E, Safont E (2011) Quaternary paleoecology and nature conservation: a general review with examples from the neotropics. Quat Sci Rev 30:2361–2388

    Article  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Wehrli M, Mitchell EAD, van der Knaap WO, Ammann B, Tinner W (2010) Effects of climatic change and bog development on Holocene tufa formation in the Lorze Valley (central Switzerland). Holocene 20:325–336

    Article  Google Scholar 

  • Wilkinson DM (1999) Is Gaia conventional ecology? Oikos 84:533–536

    Article  Google Scholar 

  • Wilkinson DM (2006) Fundamental process in ecology; an earth systems approach. Oxford University Press, Oxford

    Book  Google Scholar 

  • Wilkinson DM (2012) Paleontology and ecology – their common origins and later split. In: Louys J (ed) Paleontology in ecology and conservation. Springer, Heidelberg

    Google Scholar 

  • Wilkinson DM, Davis SR (2000) Rapid assessments of microbial biodiversity using relationships between genus and species richness. Studies on testate amoebae. Acta Protozool 39:23–26

    Google Scholar 

  • Willerslev E, Cooper A (2005) Ancient DNA. Proc R Soc B 272:3–16

    Article  Google Scholar 

  • Williams PH, Gaston KJ (1994) Measuring more of biodiversity: can higher-taxon richness predict wholesale species richness? Biol Conserv 67:211–217

    Article  Google Scholar 

  • Williams RJ, Martinez ND (2000) Simple rules yield complex food webs. Nature 404:180–183

    Article  Google Scholar 

  • Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale and synthesis. Annu Rev Ecol Syst 34:273–309

    Article  Google Scholar 

  • Willis KJ, Bailey RM, Bhagwat SA, Birks HJB (2010) Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol Evol 25:583–591

    Article  Google Scholar 

  • Wing SL, Sues H-D, Potts R, DiMichele WA, Behrensmeyer AK (1992) Evolutionary palaeoecology. In: Beherensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues H-D, Wing SL (eds) Terrestrial ecosystems through time. University of Chicago Press, London

    Google Scholar 

  • Wing SL, Alroy J, Hickey LJ (1995) Plant and mammal diversity in the Paleocene to early Eocene of the Bighorn Basin. Paleogeogr Paleoclimatol Paleoecol 115:117–155

    Article  Google Scholar 

  • Wuttke M, Poschmann M (2010) First finding of fish in the diet of a water-dwelling extinct frog Paleobatrachus from the upper oligocene fossil-lagerstätte enspel (Westerwald Mountains, Western Germany). Palaeobiodivers Palaeoenviron 90:59–64

    Article  Google Scholar 

  • Zinovjev EV (2005) Problems of ecological interpretation of quaternary insect faunas from the central part of Northern Eurasia. Quat Sci Rev 25:1821–1840

    Article  Google Scholar 

Download references

Acknowledgments

The first draft of this chapter was written while JL was a postdoctoral researcher at Liverpool John Moores University. JL and LCB thank The Leverhulme Trust for their generous funding of their research (F00754C)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Louys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Louys, J., Wilkinson, D.M., Bishop, L.C. (2012). Ecology Needs a Paleontological Perspective. In: Louys, J. (eds) Paleontology in Ecology and Conservation. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25038-5_3

Download citation

Publish with us

Policies and ethics