Skip to main content

Evolving Probabilistic Spiking Neural Networks for Spatio-temporal Pattern Recognition: A Preliminary Study on Moving Object Recognition

  • Conference paper
Neural Information Processing (ICONIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7064))

Included in the following conference series:

Abstract

This paper proposes a novel architecture for continuous spatio-temporal data modeling and pattern recognition utilizing evolving probabilistic spiking neural network ‘reservoirs’ (epSNNr). The paper demonstrates on a simple experimental data for moving object recognition that: (1) The epSNNr approach is more accurate and flexible than using standard SNN; (2) The use of probabilistic neuronal models is superior in several aspects when compared with the traditional deterministic SNN models, including a better performance on noisy data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  2. Trentin, E., Gori, M.: A survey of hybrid ANN/HMM models for automatic speech recognition. Neurocomputing 37(1-4), 91–126 (2001)

    Article  MATH  Google Scholar 

  3. Poppe, R.: A survey on vision-based human action recognition. Image and Vision Computing 28(6), 976–990 (2010)

    Article  Google Scholar 

  4. Turaga, P., Chellappa, R., Subrahmanian, V., Udrea, O.: Machine recognition of human activities: A survey. IEEE Transactions on Circuits and Systems for Video Technology 18(11), 1473–1488 (2008)

    Article  Google Scholar 

  5. Arel, I., Rose, D., Karnowski, T.: Deep Machine Learning: A New Frontier in Artificial Intelligence Research [Research Frontier]. IEEE Computational Intelligence Magazine 5(4), 13–18 (2010)

    Article  Google Scholar 

  6. Gerstner, W., Kistler, W.: Spiking neuron models: Single neurons, populations, plasticity. Cambridge University Press (2002)

    Google Scholar 

  7. Maass, W., Markram, H.: Synapses as dynamic memory buffers. Neural Networks 15(2), 155–161 (2002)

    Article  Google Scholar 

  8. Legenstein, R., Naeger, C., Maass, W.: What can a neuron learn with spike-timing-dependent plasticity?. Neural Computation 17(11), 2337–2382 (2005)

    Article  MATH  Google Scholar 

  9. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  10. Natschlager, T., Maass, W.: Spiking neurons and the induction of finite state machines. Theoretical Computer Science 287(1), 251–265 (2002)

    Article  MATH  Google Scholar 

  11. Kasabov, N.: Evolving connectionist systems: the knowledge engineering approach. Springer-Verlag New York Inc. (2007)

    Google Scholar 

  12. Schliebs, S., Kasabov, N., Defoin-Platel, M.: On the Probabilistic Optimization of Spiking Neural Networks. International Journal of Neural Systems 20(6), 481–500 (2010)

    Article  Google Scholar 

  13. Kasabov, N.: To spike or not to spike: A probabilistic spiking neuron model. Neural Networks 23(1), 16–19 (2010)

    Article  Google Scholar 

  14. Wysoski, S., Benuskova, L., Kasabov, N.: Evolving spiking neural networks for audiovisual information processing. Neural Networks 23(7), 819–835 (2010)

    Article  Google Scholar 

  15. Schliebs, S., Nuntalid, N., Kasabov, N.: Towards Spatio-Temporal Pattern Recognition Using Evolving Spiking Neural Networks. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010, Part I. LNCS, vol. 6443, pp. 163–170. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Hamed, H., Kasabov, N., Shamsuddin, S.: Probabilistic evolving spiking neural network optimization using dynamic quantum-inspired particle swarm optimization. Australian Journal of Intelligent Information Processing Systems 11(1) (2010)

    Google Scholar 

  17. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Networks 20(3), 391–403 (2007)

    Article  MATH  Google Scholar 

  18. Norton, D., Ventura, D.: Improving the separability of a reservoir facilitates learning transfer. In: Proceedings of the 2009 International Joint Conference on Neural Networks, pp. 544–549. IEEE Press (2009)

    Google Scholar 

  19. Maass, W., Zador, A.: Computing and learning with dynamic synapses. Pulsed Neural Networks, 157–178 (1999)

    Google Scholar 

  20. Kasabov, N., Schliebs, R., Kojima, H.: Probabilistic Computational Neurogenetic Framework: From Modelling Cognitive Systems to Alzheimer’s Disease. IEEE Transactions on Autonomous Mental Development (2011)

    Google Scholar 

  21. Rutishauser, U., Douglas, R., Slotine, J.: Collective Stability of Networks of Winner-Take-All Circuits. Neural Computation, 1–39 (2011)

    Google Scholar 

  22. Indiveri, G., Stefanini, F., Chicca, E.: Spike-based learning with a generalized integrate and fire silicon neuron. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1951–1954. IEEE (2010)

    Google Scholar 

  23. Indiveri, G., Chicca, E., Douglas, R.: Artificial cognitive systems: From vlsi networks of spiking neurons to neuromorphic cognition. Cognitive Computation 1(2), 119–127 (2009)

    Article  Google Scholar 

  24. Bellas, F., Duro, R., Faina, A., Souto, D.: Multilevel Darwinist Brain (MDB): Artificial Evolution in a Cognitive Architecture for Real Robots. IEEE Transactions on Autonomous Mental Development 2(4), 340–354 (2010)

    Article  Google Scholar 

  25. Goodman, D., Brette, R.: The Brian simulator. Frontiers in Neuroscience 3(2), 192 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kasabov, N., Dhoble, K., Nuntalid, N., Mohemmed, A. (2011). Evolving Probabilistic Spiking Neural Networks for Spatio-temporal Pattern Recognition: A Preliminary Study on Moving Object Recognition. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24965-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24965-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24964-8

  • Online ISBN: 978-3-642-24965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics