Skip to main content

Quadrature Nodes Meet Stippling Dots

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6667))

  • 2573 Accesses

Abstract

The stippling technique places black dots such that their density gives the impression of tone. This is the first paper that relates the distribution of stippling dots to the classical mathematical question of finding ’optimal’ nodes for quadrature rules. More precisely, we consider quadrature error functionals on reproducing kernel Hilbert spaces (RKHSs) with respect to the quadrature nodes and suggest to use optimal distributions of these nodes as stippling dot positions. Interestingly, in special cases, our quadrature errors coincide with discrepancy functionals and with recently proposed attraction-repulsion functionals. Our framework enables us to consider point distributions not only in ℝ2 but also on the torus \({\mathbb{T}}^2\) and the sphere \({\mathbb{S}}^2\). For a large number of dots the computation of their distribution is a serious challenge and requires fast algorithms. To this end, we work in RKHSs of bandlimited functions, where the quadrature error can be replaced by a least squares functional. We apply a nonlinear conjugate gradient (CG) method on manifolds to compute a minimizer of this functional and show that each step can be efficiently realized by nonequispaced fast Fourier transforms. We present numerical stippling results on \({\mathbb{S}}^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337–404 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-squares clustering. Algorithmica 20, 61–76 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balzer, M., Schlömer, T., Deussen, O.: Capacity-constrained point distributions: A variant of Lloyd’s method. ACM Transactions on Graphics 28(3), Article 86 (2009)

    Article  Google Scholar 

  4. Beylkin, G.: On the fast Fourier transform of functions with singularities. Appl. Comput. Harmon. Anal. 2, 363–381 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: Applications and algorithms. SIAM Review 41, 637–676 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dutt, A., Rokhlin, V.: Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Stat. Comput. 14, 1368–1393 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gräf, M., Kunis, S., Potts, D.: On the computation of nonnegative quadrature weights on the sphere. Appl. Comput. Harmon. Anal. 27, 124–132 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gräf, M., Potts, D.: On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms. Numer. Math. (2011), doi:10.1007/s00211-011-0399-7

    Google Scholar 

  9. Gräf, M., Potts, D., Steidl, G.: Quadrature errors, discrepancies and their relations to halftoning on the torus and the sphere. TU Chemnitz, Fakultät für Mathematik, Preprint 5 (2011)

    Google Scholar 

  10. Graf, S., Luschgy, H.: Foundations of Quantization for Probability Distributions. LNM, vol. 1730. Springer, Berlin (2000)

    MATH  Google Scholar 

  11. Healy, D.M., Kostelec, P.J., Rockmore, D.: Towards Safe and Effective High-Order Legendre Transforms with Applications to FFTs for the 2-sphere. Adv. Comput. Math. 21, 59–105 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Keiner, J., Kunis, S., Potts, D.: Using NFFT3 - a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Software 36, Article 19, 1–30 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lloyd, S.P.: Least square quantization in PCM. IEEE Transactions on Information Theory 28, 129–137 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Müller, C.: Spherical Harmonics. Springer, Aachen (1966)

    Book  MATH  Google Scholar 

  15. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems Volume II: Standard Information for Functionals. Eur. Math. Society, EMS Tracts in Mathematics 12 (2010)

    Google Scholar 

  16. Potts, D., Steidl, G., Tasche, M.: Fast Fourier transforms for nonequispaced data: A tutorial. In: Benedetto, J.J., Ferreira, P.J. (eds.) Modern Sampling Theory: Mathematics and Applications, pp. 247–270. Birkhäuser, Boston (2001)

    Chapter  Google Scholar 

  17. Schmaltz, C., Gwosdek, P., Bruhn, A., Weickert, J.: Electrostatic halftoning. Computer Graphics Forum 29, 2313–2327 (2010)

    Article  Google Scholar 

  18. Secord, A.: Weighted Voronoi stippling. In: Proceedings of the 2nd International Symposium on Non-Photorealistic Animation and Rendering, pp. 37–43. ACM Press, New York (2002)

    Google Scholar 

  19. Sloan, I.H., Womersley, R.S.: A variational characterisation of spherical designs. J. Approx. Theory 159, 308–318 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Smith, S.T.: Optimization techniques on Riemannian manifolds. In: Hamiltonian and gradient flows, algorithms and control. Fields Inst. Commun., vol. 3, pp. 113–136. Amer. Math. Soc., Providence (1994)

    Google Scholar 

  21. Teuber, T., Steidl, G., Gwosdek, P., Schmaltz, C., Weickert, J.: Dithering by differences of convex functions. SIAM J. Imaging Sci. 4, 79–108 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Udrişte, C.: Convex functions and optimization methods on Riemannian manifolds. Mathematics and its Applications, vol. 297. Kluwer Academic Publishers Group, Dordrecht (1994)

    Book  MATH  Google Scholar 

  23. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gräf, M., Potts, D., Steidl, G. (2012). Quadrature Nodes Meet Stippling Dots. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics