Skip to main content

Mechanical Modelling of Stays under Thermal Loads

  • Chapter

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 61))

Abstract

This paper aims at investigating the effects of thermal loads on the elastic response of cables in cable-stayed structures. Starting from a catenary-based approach, an analytical model for evaluating the cable’s stress variation induced by a thermal load linearly distributed along the stay chord is proposed, accounting for sag effect as well as for the stiffness of the stay-supported structure. Moreover, the Dischinger’s equivalent modulus formulation is generalized to include inelastic thermal contributions, deducing generalized Dischinger-type secant and tangent equivalent elastic moduli, and refining the quasi-secant theory recently proposed. The influence of temperature variations on the mechanical response of typical stays employed in long-span cable-stayed bridges is highlighted through several numerical applications, confirming soundness and effectiveness of the proposed formulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Troitsky, M.S.: Cable stayed bridges: An approach to Modern Bridge Design. Van Nostrand Reinhold Co., New York (1988)

    Google Scholar 

  2. Irvine, H.M.: Cable Structures. MIT Press, Cambridge (1992)

    Google Scholar 

  3. Gimsing, N.J.: Cable supported bridges: concept and design, 2nd edn. J. Wiley & Sons, New York (1997)

    Google Scholar 

  4. Leonard, J.W.: Tension structures. McGraw-Hill, New York (1988)

    Google Scholar 

  5. Buchholdt, H.A.: An introduction to cable roof structures. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  6. Kadlcak, J.: Statics of suspension cable roofs. A.A. Balkema, Rotterdam (1995)

    Google Scholar 

  7. O’Brian, W.: General solution of suspended cable problem. J. Struct. Div. ASCE 93, 1–126 (1967)

    Google Scholar 

  8. McDonald, B., Peyrot, A.: Sag-tension calculation valid for any line geometry. J. Struct. Eng. ASCE 116(9), 2374–2387 (1990)

    Article  Google Scholar 

  9. Peyrot, A.H., Goulois, A.M.: Analysis of cable structures. Comput. Struct. 10, 805–813 (1979)

    Article  Google Scholar 

  10. Jajaraman, H.B., Knudson, W.C.: A curved element for the analysis of cable structures. Comput. Struct. 14, 325–333 (1981)

    Article  Google Scholar 

  11. Karoumi, R.: Some modeling aspects in the nonlinear finite element analysis of cable supported bridges. Comput. Struct. 71, 397–412 (1999)

    Article  Google Scholar 

  12. Kim, K.S., Lee, H.S.: Analysis of target configurations under dead loads for cable-supported bridges. Comput. Struct. 79, 2681–2692 (2001)

    Article  Google Scholar 

  13. Kahla, N.B.: Response of a guyed tower to a guy rupture under no wind pressure. Eng. Struct. 22, 699–706 (2000)

    Article  Google Scholar 

  14. Bruno, D., Leonardi, A.: Nonlinear structural models in cableway transport systems. Simulat Pract. Theory 7(3), 207–218 (1999)

    Article  Google Scholar 

  15. Zhu, N.H., Meguid, S.A.: Elastodynamic analysis of low tension cables using a new curved beam element. Int. J. Solids Struct. 43, 1490–1504 (2006)

    Article  MATH  Google Scholar 

  16. Ni, Y.Q., Ko, J.M., Zheng, G.: Dynamic analysis of large-diameter sagged cables taking into account flexural rigidity. J. Sound Vib. 257(2), 301–319 (2002)

    Article  Google Scholar 

  17. Ceballos, M.A., Prato, C.A.: Determination of the axial force on stay cables accounting for their bending and rotational end restraints by free vibration tests. J. Sound Vib. 317, 127–141 (2008)

    Article  Google Scholar 

  18. Srinil, N., Rega, G., Chucheepsakul, S.: Large amplitude three-dimensional free vibrations of inclined sagged elastic cables. Nonlinear Dynam. 33, 129–154 (2003)

    Article  MATH  Google Scholar 

  19. Lacarbonara, W., Paolone, A., Vestroni, F.: Non-linear modal properties of non-shallow cables. Int. J. Nonlinear Mech. 42, 542–554 (2007)

    Article  Google Scholar 

  20. Srinil, N., Rega, G.: Nonlinear longitudinal/transversal modal interactions in highly extensible suspended cables. J. Sound Vib. 310, 230–242 (2008)

    Article  Google Scholar 

  21. Montassar, S., Vairo, G.: Thermal effects on statical behaviour of elastic cables for cable-stayed structures. In: Proc. XXXVII Nat. Cong. Italian Association Stress Analysis AIAS, Rome (2008)

    Google Scholar 

  22. Ren, W.X., Chen, G., Hu, W.H.: Empirical formulas to estimate cable tension by cable fundamental frequency. Struct. Eng. Mech. 20, 363–380 (2005)

    Google Scholar 

  23. Kim, B.H., Park, T.: Estimation of cable tension force using the frequency-based system identification method. J. Sound Vib. 304, 660–676 (2007)

    Article  Google Scholar 

  24. Bouaanani, N.: Numerical investigation of the modal sensistivity of suspended cables with localized damage. J. Sound Vib. 292, 1015–1030 (2006)

    Article  Google Scholar 

  25. Lepidi, M., Gattulli, V., Vestroni, F.: Static and dynamic response of elastic suspended cables with damage. Int. J. Solids Struct. 44, 8194–8212 (2007)

    Article  MATH  Google Scholar 

  26. Noisternig, J.F.: Carbon fibre composites as stay cables for bridges. Appl. Compos. Mater. 7, 139–150 (2000)

    Article  Google Scholar 

  27. Dischinger, F.: Hängebrücken für schwerste Verkehrslasten (I and II). Der Bauingenieur 24(3), 65–75, 107–113 (1949) (in German)

    Google Scholar 

  28. Ernst, J.H.: Der E-modul von seilen unter berücksichtigung des durchhanges. Der Bauingenieur 40(2), 52–55 (1965) (in German)

    Google Scholar 

  29. Bruno, D., Maceri, F., Olivito, R.S.: Analysis of the elastic response of stays and stayed systems. IABSE Proc. P-143 90, 29–44 (1990)

    Google Scholar 

  30. Freire, A.M.S., Negrao, J.H.O., Lopes, A.V.: Geometrical nonlinearities on the static analysis of highly flexible steel cable-stayed bridges. Comput. Struct. 84, 2128–2140 (2006)

    Article  Google Scholar 

  31. Como, M., Grimaldi, A., Maceri, F.: Statical behaviour of long-span cable-stayed bridges. Int. J. Solids Struct. 21(8), 831–850 (1985)

    Article  MATH  Google Scholar 

  32. Tibert, G.: Numerical analyses of cable roof structures. Trita-Bkn, Bulletin 49 (1999)

    Google Scholar 

  33. Desai, Y.M., Punde, S.: Simple model for dynamic analysis of cable supported structures. Eng. Struct. 23, 271–279 (2001)

    Article  Google Scholar 

  34. Au, F.T.K., Cheng, Y.S., Cheung, Y.K., Zheng, D.Y.: On the determination of natural frequencies and mode shapes of cable-stayed bridges. Appl. Math. Model 25, 1099–1115 (2001)

    Article  MATH  Google Scholar 

  35. Cheng, J., Jiang, J.J., Xiao, R.C., Xiang, H.F.: Advanced aerostatic stability analysis of cable-stayed bridges using finite-element method. Comput. Struct. 80, 1145–1158 (2002)

    Article  Google Scholar 

  36. Maceri, F., Vairo, G.: Modelling and simulation of long-span bridges under aerodynamic loads. In: Frémond, M., Maceri, F. (eds.) Novel Approaches in Civil Engineering. LNACM, vol. 14, pp. 359–376. Springer, Heidelberg (2004)

    Google Scholar 

  37. Yau, J.D., Yang, Y.B.: Vibration reduction for cable-stayed bridges traveled by high-speed trains. Finite Elem. Anal. Des. 40, 341–359 (2004)

    Article  Google Scholar 

  38. Song, W.K., Kim, S.E.: Analysis of the overall collapse mechanism of cable-stayed bridges with different cable layouts. Eng. Struct. 29, 2133–2142 (2007)

    Article  Google Scholar 

  39. Bruno, D., Greco, F., Lonetti, P.: Dynamic impact analysis of long span cable-stayed bridges under moving loads. Eng. Struct. 30, 1160–1177 (2008)

    Article  Google Scholar 

  40. Vairo, G.: A simple analytical approach to the aeroelastic stability problem of long-span cable-stayed bridges. Int. J. Comput. Method Eng. Sci. Mech. 11, 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  41. Vairo, G.: A closed-form refined model of the cable’s nonlinear response in cable-stayed structures. Mech. Adv. Mater. Struct. 16, 456–466 (2009)

    Article  Google Scholar 

  42. Vairo, G.: A quasi-secant continuous model for the analysis of long-span cable-stayed bridges. Meccanica 43, 237–250 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vairo, G., Montassar, S. (2012). Mechanical Modelling of Stays under Thermal Loads. In: Frémond, M., Maceri, F. (eds) Mechanics, Models and Methods in Civil Engineering. Lecture Notes in Applied and Computational Mechanics, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24638-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24638-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24637-1

  • Online ISBN: 978-3-642-24638-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics