Skip to main content

Pleasing Shapes for Topological Objects

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 18))

Abstract

Topology is the study of deformable shapes; to draw a picture of a topological object one must choose a particular geometric shape. One strategy is to minimize a geometric energy, of the type that also arises in many physical situations. The energy minimizers or optimal shapes are also often aesthetically pleasing. This article first appeared in an Italian translation [Sullivan, Affascinanti forme per oggetti topologici, 145–156 (2011)].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Almgren, F.J. Jr., Sullivan, M.: Visualization of soap bubble geometries. Leonardo 24(3/4), 267–271 (1992)

    Article  Google Scholar 

  2. Brakke, K.A.: The surface evolver. Exp. Math. 1(2), 141–165 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cantarella, J., Kusner, R.B., Sullivan, J.M.: On the minimum ropelength of knots and links. Inventiones Math. 150(2), 257–286 (2002), arXiv:math.GT/0103224

    Article  MathSciNet  MATH  Google Scholar 

  4. Cantarella, J., Fu, J., Kusner, R., Sullivan, J.M., Wrinkle, N.: Criticality for the Gehring link problem. Geom. Topology 10, 2055–2115 (2006), arXiv.org/math.DG/0402212

    Article  MathSciNet  MATH  Google Scholar 

  5. Emmer, M. (ed.): The Visual Mind: Art and Mathematics. MIT, Cambridge (1993)

    Google Scholar 

  6. Francis, G., Morin, B.: Arnold Shapiro’s eversion of the sphere. Math. Intell. 2, 200–203 (1979)

    Article  MathSciNet  Google Scholar 

  7. Francis, G., Sullivan, J.M., Kusner, R.B., Brakke, K.A., Hartman, C., Chappell, G.: The Minimax Sphere Eversion. In: Hege, H.-C., Polthier, K.(eds.) Visualization and Mathematics, pp. 3–20. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  8. Gunn, C., Sullivan, J.M.: The Borromean rings: a new logo for the IMU. In: Polthier, K., Aigner, M., Apostol, T.M., Emmer, M., Hege, C.-H., Weinberg, U. (eds.) MathFilm Festival. Springer, Berlin (2008); 5-minute video

    Google Scholar 

  9. Gunn, C., Sullivan, J.M.: The Borromean rings: a video about the new IMU logo. Bridges Proceedings (Leeuwarden), pp. 63–70 (2008)

    Google Scholar 

  10. Karcher, H., Pinkall, U.: Die Boysche Fläche in Oberwolfach. Mitteilungen der DMV 97(1), 45–47 (1997)

    Google Scholar 

  11. Kusner, R., Sullivan, J.M.: Comparing the Weaire-Phelan equal-volume foam to Kelvin’s foam. Forma 11(3), 233–242 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Morgan, F.: Proof of the double bubble conjecture. Am. Math. Monthly 108(3), 193–205 (2001)

    Article  MATH  Google Scholar 

  13. Pinkall, U., Sterling, I.: Willmore surfaces. Math. Intell. 9(2), 38–43 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sullivan, J.M.: Generating and rendering four-dimensional polytopes. Math. J. 1(3), 76–85 (1991)

    Google Scholar 

  15. Sullivan, J.M.: The geometry of bubbles and foams. In: Rivier, N., Sadoc, J.-F. (eds.) Foams and Emulsions. NATO Advanced Science Institute Series E: Applied Sciences, vol. 354, pp. 379–402. Kluwer, Dordrecht (1998)

    Google Scholar 

  16. Sullivan, J.M.: The Optiverse and other sphere eversions. Bridges Proceedings (Winfield), pp. 265–274 (1999), arXiv:math.GT/9905020

    Google Scholar 

  17. Sullivan, J.M.: Minimal flowers. Bridges Proceedings (Pécs), pp. 395–398 (2010)

    Google Scholar 

  18. Sullivan, J.M.: Affascinanti forme per oggetti topologici. In: Emmer, M. (ed.) Matematica e cultura 2011, pp. 145–156. Springer, Italia (2011)

    Chapter  Google Scholar 

  19. Sullivan, J.M., Morgan, F. (eds.): Open problems in soap bubble geometry. Int. J. Math. 7(6), 833–842 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sullivan, J.M., Francis, G., Levy, S.: The Optiverse. In: Hege, H.-C., Polthier, K. (eds.) VideoMath Festival at ICM’98, p. 16. Springer, Berlin (1998); plus 7-minute video, torus.math.uiuc.edu/optiverse/

    Google Scholar 

  21. Thompson, W. (Lord Kelvin), On the division of space with minimum partitional area. Philos. Mag. 24, 503–514 (1887), also published in Acta Math. 11, 121–134

    Google Scholar 

  22. Weaire, D. (ed.): The Kelvin Problem. Taylor & Francis, London (1997)

    Google Scholar 

  23. Weaire, D., Phelan, R.: A counter-example to Kelvin’s conjecture on minimal surfaces. Phil. Mag. Lett. 69(2), 107–110 (1994)

    Article  Google Scholar 

  24. Willmore, T.J.: A survey on Willmore immersions. In: Geometry and Topology of Submanifolds, IV (Leuven, 1991), pp. 11–16. World Scientific, Singapore (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Sullivan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sullivan, J.M. (2012). Pleasing Shapes for Topological Objects. In: Bruter, C. (eds) Mathematics and Modern Art. Springer Proceedings in Mathematics, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24497-1_13

Download citation

Publish with us

Policies and ethics