Skip to main content

Anatomical Regularization on Statistical Manifolds for the Classification of Patients with Alzheimer’s Disease

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7009))

Included in the following conference series:

Abstract

This paper introduces a continuous framework to spatially regularize support vector machines (SVM) for brain image analysis based on the Fisher metric. We show that, by considering the images as elements of a statistical manifold, one can define a metric that integrates various types of information. Based on this metric, replacing the standard SVM regularization with a Laplace-Beltrami regularization operator allows integrating to the classifier various types of constraints based on spatial and anatomical information. The proposed framework is applied to the classification of magnetic resonance (MR) images based on gray matter concentration maps from 137 patients with Alzheimer’s disease and 162 elderly controls. The results demonstrate that the proposed classifier generates less-noisy and consequently more interpretable feature maps with no loss of classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. NeuroImage 11(6), 805–821 (2000)

    Article  Google Scholar 

  2. Davatzikos, C.: Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. NeuroImage 23(1), 17–20 (2004)

    Article  Google Scholar 

  3. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  4. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  5. Davatzikos, C., et al.: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. NeuroImage 41(4), 1220–1227 (2008)

    Article  Google Scholar 

  6. Klöppel, S., et al.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131(3), 681–689 (2008)

    Article  Google Scholar 

  7. Vemuri, P., et al.: Alzheimer’s disease diagnosis in individual subjects using structural mr images: Validation studies. NeuroImage 39(3), 1186–1197 (2008)

    Article  Google Scholar 

  8. Gerardin, É., et al.: Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. NeuroImage 47(4), 1476–1486 (2009)

    Article  Google Scholar 

  9. Cuingnet, R., et al.: Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database. NeuroImage 56(2), 766–781 (2011)

    Article  Google Scholar 

  10. Fan, Y., et al.: COMPARE: classification of morphological patterns using adaptive regional elements. IEEE Transactions on Medical Imaging 26(1), 93–105 (2007)

    Article  Google Scholar 

  11. Duchesne, S., et al.: Automated computer differential classification in Parkinsonian syndromes via pattern analysis on MRI. Academic Radiology 16(1), 61–70 (2009)

    Article  MathSciNet  Google Scholar 

  12. Cuingnet, R., Rosso, C., Lehéricy, S., Dormont, D., Benali, H., Samson, Y., Colliot, O.: Spatially regularized SVM for the detection of brain areas associated with stroke outcome. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 316–323. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Querbes, O., et al.: Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain 132(8), 2036–2047 (2009)

    Article  Google Scholar 

  14. Jost, J.: Riemannian geometry and geometric analysis. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  15. Lafferty, J., Lebanon, G.: Diffusion kernels on statistical manifolds. JMLR 6, 129–163 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Hebey, E.: Sobolev spaces on Riemannian manifolds. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  17. Amari, S.I., et al.: Differential Geometry in Statistical Inference, vol. 10. Institute of Mathematical Statistics (1987)

    Google Scholar 

  18. Druet, O., Hebey, E., Robert, F.: Blow-up theory for elliptic PDEs in Riemannian geometry. Princeton Univ. Press, Princeton (2004)

    MATH  Google Scholar 

  19. Jack, C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging 27(4) (2008)

    Google Scholar 

  20. Ashburner, J., Friston, K.J.: Unified segmentation. NeuroImage 26(3), 839–851 (2005)

    Article  Google Scholar 

  21. Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38(1), 95–113 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cuingnet, R., Glaunès, J.A., Chupin, M., Benali, H., Colliot, O. (2011). Anatomical Regularization on Statistical Manifolds for the Classification of Patients with Alzheimer’s Disease. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2011. Lecture Notes in Computer Science, vol 7009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24319-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24319-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24318-9

  • Online ISBN: 978-3-642-24319-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics