Skip to main content

A Game Theoretic Approach to Community Detection in Social Networks

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 387))

Abstract

The problem of detecting community structures in social networks is a complex problem of great importance in sociology, biology and computer science. Communities are characterized by dense intra-connections and comparatively sparse inter-cluster connections. The community detection problem is empirically formulated from a game theoretic point of view and solved using a Crowding based Differential Evolution algorithm adapted for detecting Nash equilibria of noncooperative games. Numerical results indicate the potential of this approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barabási, A.L.: Linked: The New Science of Networks, 1st edn. Basic Books, New York (2002)

    Google Scholar 

  2. Chira, C., Gog, A.: Collaborative community detection in complex networks. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part I. LNCS, vol. 6678, pp. 380–387. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Fortunato, S.: Community detection in graphs (2010), http://arxiv.org/abs/0906.0612

  4. Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in networks. Physical Review E 83(1), 016, 107+ (2011), http://dx.doi.org/10.1103/PhysRevE.83.016107 , doi:10.1103/PhysRevE.83.016107

  5. Lai, D., Nardini, C., Lu, H.: Partitioning networks into communities by message passing. Physical Review E 83(1), 016, 115+ (2011), http://dx.doi.org/10.1103/PhysRevE.83.016115 , doi:10.1103/PhysRevE.83.016115.

  6. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics 11(3), 033, 015+ (2009), http://dx.doi.org/10.1088/1367-2630/11/3/033015 , doi:10.1088/1367-2630/11/3/033015

  7. Lung, R., Mihoc, T., Dumitrescu, D.: Nash equilibria detection for multi-player games. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–5 (2010), doi:10.1109/CEC.2010.5586174

    Google Scholar 

  8. Lung, R.I., Dumitrescu, D.: Computing nash equilibria by means of evolutionary computation. Int. J. of Computers, Communications & Control III(suppl. issue), 364–368 (2008)

    Google Scholar 

  9. Lusseau, D., Newman, M.E.J.: Identifying the role that individual animals play in their social network (2004)

    Google Scholar 

  10. McKelvey, R.D., McLennan, A.: Computation of equilibria in finite games. In: Amman, H.M., Kendrick, D.A., Rust, J. (eds.) Handbook of Computational Economics, vol. 1, ch. 2, pp. 87–142. Elsevier, Amsterdam (1996)

    Google Scholar 

  11. Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, USA (2009)

    MATH  Google Scholar 

  12. Nash, J.F.: Non-cooperative games. Annals of Mathematics 54, 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  13. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69(2), 026, 113+ (2004), http://dx.doi.org/10.1103/PhysRevE.69.026113 , doi: 10.1103/PhysRevE.69.026113

  14. Osborne, M.J.: Introduction to Game Theory: International Edition. No. 9780195322484 in OUP Catalogue. Oxford University Press, Oxford (2009)

    Google Scholar 

  15. Pizzuti, C.: Ga-net: A genetic algorithm for community detection in social networks. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1081–1090. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Pizzuti, C.: A multi-objective genetic algorithm for community detection in networks. In: IEEE International Conference on Tools with Artificial Intelligence, vol. 0, pp. 379–386 (2009), doi: http://doi.ieeecomputersociety.org/10.1109/ICTAI.2009.58

    Google Scholar 

  17. Pizzuti, C.: Overlapped community detection in complex networks. In: GECCO, pp. 859–866 (2009)

    Google Scholar 

  18. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. In: Proc. Natl. Acad. Sci. USA (PNAS 2004), vol. 101, pp. 2658–2663 (2004)

    Google Scholar 

  19. Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. Tech. Rep. TR-95-012, Berkeley, CA (1995), http://citeseer.ist.psu.edu/article/storn95differential.html

  20. Storn, R., Price, K.: Differential evolution a simple evolution strategy for fast optimization. Dr. Dobb’s Journal of Software Tools 22(4), 18–24 (1997)

    MathSciNet  Google Scholar 

  21. Tasgin, M., Bingol, H.: Community detection in complex networks using genetic algorithm (2006), http://arxiv.org/abs/cond-mat/0604419

  22. Thomsen, R.: Multimodal optimization using crowding-based differential evolution. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, pp. 1382–1389. IEEE Press, Portland (2004)

    Google Scholar 

  23. Šubelj, L., Bajec, M.: Unfolding communities in large complex networks: Combining defensive and offensive label propagation for core extraction. Physical Review E 83(3), 036, 103+ (2011), http://dx.doi.org/10.1103/PhysRevE.83.036103 , doi: 10.1103/PhysRevE.83.036103

  24. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998), http://dx.doi.org/10.1038/30918 , doi:10.1038/30918

    Article  Google Scholar 

  25. Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33(4) (1977), http://dx.doi.org/10.2307/3629752 , doi:10.2307/3629752

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lung, R.I., Gog, A., Chira, C. (2011). A Game Theoretic Approach to Community Detection in Social Networks. In: Pelta, D.A., Krasnogor, N., Dumitrescu, D., Chira, C., Lung, R. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2011). Studies in Computational Intelligence, vol 387. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24094-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24094-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24093-5

  • Online ISBN: 978-3-642-24094-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics