Skip to main content

Gaze-Dependent Depth-of-Field Effect Rendering in Virtual Environments

  • Conference paper
Serious Games Development and Applications (SGDA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6944))

Included in the following conference series:

Abstract

This paper presents gaze-dependent depth-of-field (DOF) rendering setup, consisting of high frequency eye tracker connected to a graphics workstation. A scene is rendered and visualised with the DOF simulation controlled by data captured with the eye tracker. To render a scene in real-time, the reverse-mapped z-buffer DOF simulation technique with the blurring method based on Poisson disk is used. We conduct perceptual experiments to test human impressions caused by simulation of the DOF phenomenon and to assess benefits of using eye tracker to control the DOF effect rendering in virtual environments. Additionally, we survey the eye tracking technologies suitable for virtual environments and preview techniques of the real time DOF rendering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marks, S., Windsor, J., Wünsche, B.: Evaluation of game engines for simulated surgical training. In: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, GRAPHITE 2007, pp. 273–280 (2007)

    Google Scholar 

  2. Anderson, E.F., McLoughlin, L., Liarokapis, F., Peters, C., Petridis, P., Freitas, S.: Serious Games in Cultural Heritage VAST 2009: 10th International Symposium on Virtual Reality, Archaeology and Cultural Heritage - VAST-STAR, Short and Project Proceedings, pp. 29-48 (2009)

    Google Scholar 

  3. Myers, S.: Streamlining Simulation Development using a Commercial Game Engine Camber Corporation, Technical Report RTO-MP-MSG-069

    Google Scholar 

  4. Ritterfeld, U., Cody, M., Vorderer, P.: Serious Games: Mechanisms and Effects, 1st edn. Routledge, New York (2009)

    Google Scholar 

  5. Goldstein, E.B.: Sensation and Perception, 5th edn. Brooks/Cole Publishing Company (1998)

    Google Scholar 

  6. Mather, G.: The use of image blur as a depth cue. Perception 26, 1147–1158 (1997)

    Article  Google Scholar 

  7. Hillaire, S., Lecuyer, A., Cozot, R., Casiez, G.: Using an eye-tracking system to improve camera motions and depth-of-field blur effects in virtual environments. In: Proc. of IEEE Virtual Reality, pp. 47–50 (2008)

    Google Scholar 

  8. Duchowski, A.T.: Eye Tracking Methodology: Theory and Practice, 2nd edn. Springer, London (2007)

    MATH  Google Scholar 

  9. RED250 Technical Specification. SensoMotoric Instruments GmbH (2009)

    Google Scholar 

  10. Tobii T/X series Eye Trackers. Product Description. Tobii Technology AB, 2nd edn. (2009)

    Google Scholar 

  11. Morimoto, C.H., Mimica, M.: Eye gaze tracking techniques for interactive applications. Computer Vision and Image Understanding 98(1), 4–24 (2005)

    Article  Google Scholar 

  12. Demers, J.: Depth of Field: A Survey of Techniques GPU GEMS. Addison-Wesley, Reading (2004)

    Google Scholar 

  13. Riguer, G., Tatarchuk, N., Isidoro, J.: Real-time depth of field simulation. haderX2: Shader Programming Tips and Tricks with DirectX 9.0, 529–579 (2002)

    Google Scholar 

  14. Potmesil, M., Chakravarty, I.: Modeling motion blur in computer-generated images. ACM SIGGRAPH Comput. Graph. 17(3), 389–399 (1983)

    Article  Google Scholar 

  15. Hillaire, S., Lecuyer, A., Cozot, R., Casiez, G.: Depth-of-field blur effects for first-person navigation in virtual environments. In: Proc. of the ACM Symposium on Virtual Reality Software and Technology, pp. 203–206 (2007)

    Google Scholar 

  16. Hammon, E.: Practical post-process depth of field. GPU Gems 3, Hubert Nguyen, NVIDIA Corporation (2008)

    Google Scholar 

  17. Poole, A., Ball, L.J.: Eye Tracking in Human-Computer Interaction and Usability Research: Current Status and Future Prospects. Encyclopedia of Human-Computer Interaction, C. Ghaoui, Idea Group, Inc., Pennsylvania (2005)

    Google Scholar 

  18. Sasse, D.: A Framework for Psychophysiological Data Acquisition in Digital Games Master’s thesis (2008)

    Google Scholar 

  19. Lee, S., Eisemann, E., Seidel, H.P.: Real-Time Lens Blur Effects and Focus Control. ACM Transactions on Graphics, SIGGRAPH 2010 (2010)

    Google Scholar 

  20. Lee, S., Eisemann, E., Seidel, H.P.: Depth-of-Field Rendering with Multiview Synthesis. ACM Trans. Graph (SIGGRAPH ASIA 2009) 28(5), 1–6 (2009)

    Google Scholar 

  21. Lee, S., Kim, G.J., Choi, S.: Real-Time Depth-of-Field Rendering Using Splatting on Per-Pixel Layers. Computer Graphics Forum 27(7), 1955–1962 (2008)

    Article  Google Scholar 

  22. Aknine-Moller, T., Haines, E., Hoffman, N.: Real Time Rendering, 3rd edn. A K Peters, Stanford (2008)

    Book  Google Scholar 

  23. ITU-R.REC.BT.500-11: Methodology for the subjective assessment of the quality for television pictures (2002)

    Google Scholar 

  24. Slater, M., Spanlang, B., Corominas, D.: Simulating virtual environments within virtual environments as the basis for a psychophysics of presence. ACM Trans. Graph. 29(4), 92:1–02:9. (2010)

    Article  Google Scholar 

  25. Slater, M.: Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1535), 3549–3557 (2009)

    Article  Google Scholar 

  26. Hillaire, S., Lécuyer, A., Regia-Corte, T., Cozot, R., Royan, J., Breton, G.: A real-time visual attention model for predicting gaze point during first-person exploration of virtual environments. In: Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology (VRST 2010), Hong Kong, pp. 191–198 (2010)

    Google Scholar 

  27. Kenny, A., Delaney, H., Mcloone, S., Ward, T.: A preliminary investigation into eye gaze data in a first person shooter game. In: Proceedings of European Conference on Modelling and Simulation. Addison-Wesley, Reading (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mantiuk, R., Bazyluk, B., Tomaszewska, A. (2011). Gaze-Dependent Depth-of-Field Effect Rendering in Virtual Environments. In: Ma, M., Fradinho Oliveira, M., Madeiras Pereira, J. (eds) Serious Games Development and Applications. SGDA 2011. Lecture Notes in Computer Science, vol 6944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23834-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23834-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23833-8

  • Online ISBN: 978-3-642-23834-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics