Skip to main content

Sources of Spectral Photon Radiation

  • Chapter
  • First Online:
Photons in Natural and Life Sciences

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 157))

  • 1259 Accesses

Abstract

The chapter treats the various experimental methods to generate high-energy photons from accelerated and relativistic charges, relevant for applications in chemistry, biology, material science and physics which will be treated in Chaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.B. Patel, Nuclear Physics: An Introduction (New Age International (P) Ltd. Publishers, 1991), p. 322 (reprint, 2006)

    Google Scholar 

  2. R.J. Bickerton, The purpose, status and future of fusion research, Plasma Phys. Control. Fusion 35, B3–B21 (1993)

    Article  ADS  Google Scholar 

  3. F.E. Cecil, D.M. Cole, F.J. Wilkinson III, S.S. Medley, Measurement and application of DDγ, DTγ and D3Heγ reactions at low energy, Nucl. Instrum. Meth. Phys. Res. B 10/11, 411–414 (1985)

    Google Scholar 

  4. J.M. Mack et al., Remarks on detecting high-energy deuterium–tritium fusion gamma rays using a gas Cherenkov detector, Radiat. Phys. Chem. 75, 551–556 (2006)

    Article  ADS  Google Scholar 

  5. M. Haegi, E. Bittoni, A. Fubini, S. Rollet, Gamma diagnostics on charged fusion products in a thermonuclear plasma, Nucl. Fusion 35, 1625–1630 (1995)

    Article  ADS  Google Scholar 

  6. M. Planck, Über das Gesetz der Energieverteilung im Normalspektrum, Ann. d. Phys. 309, 553–563 (1901)

    Article  ADS  Google Scholar 

  7. W. Wien, Ueber die Energievertheilung im Emissionsspectrum eines schwarzen Körpers, Ann. d. Phys. 294, 662–669 (1896)

    Article  ADS  Google Scholar 

  8. G.H. Aston, The amount of energy emitted in the γ-ray form by radium E, Proc. Cambridge Philos. Soc. 23, 935–941 (1927)

    Article  ADS  Google Scholar 

  9. B. Singh, S.S. Al-Dagazelli, Production of internal Bremsstrahlung accompanying β-decay from Sr90 and Y90, Phys. Rev. C 4, 2144 (1971)

    Article  ADS  Google Scholar 

  10. G. Schatz, A. Weidinger, Nuclear Condensed Matter Physics (Wiley, New York, 1995)

    Google Scholar 

  11. E.M. Purcell, The lifetime of the 22S1 ∕ 2 state of hydrogen in an ionized atmosphere, Astrophys. J. 116, 457–462 (1952)

    Article  ADS  Google Scholar 

  12. C. Eckart, The application of group theory to the quantum dynamics of monatomic systems, Rev. Mod. Phys. 2, 305–380 (1930)

    Article  ADS  MATH  Google Scholar 

  13. E.P. Wigner, Einige Folgerungen aus der Schrödingerschen Theorie für die Termstrukturen, Z. Physik 43, 624–652 (1927)

    Article  ADS  MATH  Google Scholar 

  14. P. Bloomfield, Fourier Analysis of Time Series: An Introduction (Wiley, New York, 2000)

    Book  MATH  Google Scholar 

  15. C. Dey, A perturbed angular correlation spectrometer for materials science studies, Pramana J. Phys. 70, 835–846 (2008)

    Article  ADS  Google Scholar 

  16. M. Brüssler, H. Metzner, K.-D. Husemannn, H.J. Lewerenz, Phase identification in the Cu–In–S system by \(\gamma \mbox{ \textendash }\gamma \) perturbed angular correlations, Phys. Rev. B 38, 9268–9271 (1988)

    Article  ADS  Google Scholar 

  17. H. Metzner, M. Brüssler, K.-D. Husemann, H.J. Lewerenz, Characterization of phases and determination of phase relations in the Cu–In–S system by \(\gamma \mbox{ \textendash }\gamma \) perturbed angular correlations, Phys. Rev. B 44, 11614–11623 (1991)

    Article  ADS  Google Scholar 

  18. P.A. Cherenkov, Visible emission of clean liquids by action of γ radiation, Doklady Akad. Nauk SSSR 2, 451 (1934)

    Google Scholar 

  19. I.E. Tamm, I.M. Frank, Coherent radiation of a fast electron in a medium, Doklady Akad. Nauk. SSSR 14, 107–112 (1937)

    Google Scholar 

  20. A.P. Kobzev, The mechanism of Vavilov–Cherenkov radiation, Phys. Part. Nucl. 41, 452–470 (2010)

    Article  Google Scholar 

  21. E. Fermi, The ionization loss of energy in gases and condensed materials, Phys. Rev. 57, 485–493 (1940)

    Article  ADS  Google Scholar 

  22. W. Knulst, M.J. van der Wiel, O.J. Luiten, J. Verhoeven, High-brightness, narrowband, and compact soft X-ray Cherenkov sources in the water window, Appl. Phys. Lett. 83, 4050–4052 (2003)

    Article  ADS  Google Scholar 

  23. C. Luo, M. Ibanescu, S.G. Johnson, J.D. Joannopoulos, Cherenkov radiation in photonic crystals, Science 299, 368–371 (2003)

    Article  ADS  Google Scholar 

  24. F.J. Garcia de Abajo, Optical excitations in electron microscopy, Rev. Mod. Phys. 82, 209–275 (2010)

    Article  ADS  Google Scholar 

  25. W. Galbraight, J.V. Jelly, Light pulses from the night sky associated with cosmic rays Nature 171, 349–350 (1953)

    Google Scholar 

  26. I. Arino et al., The HERA-B ring imaging Cherenkov counter, Nucl. Instrum. Meth. Phys. Res. A 516, 445–461 (2004)

    Article  ADS  Google Scholar 

  27. X. Artru, G.B. Yodh, G. Mennessier, Practical theory of the multilayered transition radiation detector, Phys. Rev. D 12, 1289–1306 (1975)

    Article  ADS  Google Scholar 

  28. J.P. Blewett, Synchrotron radiation 1873–1947, Nucl. Instrum. Meth. Phys. Res. A 266, 1–9 (1988)

    Article  ADS  Google Scholar 

  29. R. Follath et al., Comissioning of the U49/2 PGM1 beamline, Synch. Rad. Instrum. CP 705, 348–351 (2004)

    ADS  Google Scholar 

  30. R. Bonifacio, N. Narducci, C. Pellegrini, Collective instabilities and high-gain regime in a free electron laser, Opt. Commun. 50, 373–378 (1984)

    Article  ADS  Google Scholar 

  31. J. Andruszkow et al., First observation of self-amplified spontaneous emission in a free electron laser at 109 nm wavelength, Phys. Rev. Lett. 85, 3825–3829 (2000)

    Article  ADS  Google Scholar 

  32. R. Bonifacio, L. De Salvo, P. Picrini, N. Piovella, C. Pellegrini, Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise, Phys. Rev. Lett. 73, 70–73 (1994)

    Article  ADS  Google Scholar 

  33. S. Reiche, GENESIS 1.3: a fully 3D time dependent FEL simulation code, Nucl. Instrum. Meth. A 429, 243–249 (1999)

    Google Scholar 

  34. L.-H. Yu et al., High-gain harmonic-generation free-electron laser, Science 289, 932–934 (2000)

    Article  ADS  Google Scholar 

  35. S.V. Milton et al., Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser, Science 292, 2037–2041 (2001)

    Article  ADS  Google Scholar 

  36. V. Ayvazyan et al., Generation of GW radiation pulses from a VUV free-electron laser operating in the femtosecond regime, Phys. Rev. Lett. 88, 104802 (2002)

    Article  ADS  Google Scholar 

  37. P. Emma et al., First lasing and operation of an angström-wavelenght free-electron laser, Nature Photon. 4, 641–647 (2010)

    Article  ADS  Google Scholar 

  38. J. Feldhaus, The FEL program at DESY: from first results at 100 nm wavelength to a True 1À X-ray Laser, Phys. Scripta T 110, 413–419 (2004)

    Article  Google Scholar 

  39. R.W. Schoenlein et al., Generation of femtosecond pulses of synchrotron radiation, Science 287, 2237–2240 (2000)

    Article  ADS  Google Scholar 

  40. P.M. Woodward, A method for calculating the field over a plane aperture required to produce a given polar diagram, J. Instrum. Electr. Eng. 93, 1554 (1946)

    Google Scholar 

  41. J.D. Lawson, Lasers and accelerators, IEEE Trans. Nucl. Sci. NS-26, 4217 (1979)

    Google Scholar 

  42. A.A. Zholents, M.S. Zolotorev, Femtosecond X-ray pulses of synchrotron radiation, Phys. Rev. Lett. 76, 912–915 (1996)

    Article  ADS  Google Scholar 

  43. N. Yamamoto et al., Study of the coherent terahertz radiation by laser bunch slicing at UVSOR-II electron storage ring, Proc. IPAC’ 10, 2570–2572 (2010)

    Google Scholar 

  44. R. Bingham, L.O. Silva, J.T. Mendonca, P.K. Shukla, W.B. Mori, A. Serbeto, Neutrino plasma coupling in dense astrophysical plasmas, Plasma Phys. Control. Fusion 46, B327–B334 (2004)

    Article  Google Scholar 

  45. G.R. Neil et al., Production of high power femtosecond terahertz radiation, Nucl. Instrum. Meth. Phys. Res. A 507, 537–540 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Lewerenz .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lewerenz, HJ. (2012). Sources of Spectral Photon Radiation. In: Photons in Natural and Life Sciences. Springer Series in Optical Sciences, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23749-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23749-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23748-5

  • Online ISBN: 978-3-642-23749-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics