Skip to main content

Approximating Minimum Manhattan Networks in Higher Dimensions

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6942))

Abstract

We consider the minimum Manhattan network problem, which is defined as follows. Given a set of points called terminals in ℝd, find a minimum-length network such that each pair of terminals is connected by a set of axis-parallel line segments whose total length is equal to the pair’s Manhattan (that is, L 1-) distance. The problem is NP-hard in 2D and there is no PTAS for 3D (unless \({\cal P}\!=\!{\cal NP}\)). Approximation algorithms are known for 2D, but not for 3D.

We present, for any fixed dimension d and any \(\ensuremath{\varepsilon} >0\), an \(O(n^\ensuremath{\varepsilon} )\)-approximation. For 3D, we also give a 4(k − 1)-approximation for the case that the terminals are contained in the union of k ≥ 2 parallel planes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S.: Approximation schemes for NP-hard geometric optimization problems: A survey. Math. Program. 97(1–2), 43–69 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean spanners: Short, thin, and lanky. In: Proc. 27th Annu. ACM Symp. Theory Comput (STOC), pp. 489–498. ACM Press, New York (1995)

    Google Scholar 

  3. Benkert, M., Wolff, A., Widmann, F., Shirabe, T.: The minimum Manhattan network problem: Approximations and exact solutions. Comput. Geom. Theory Appl. 35(3), 188–208 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Charikar, M., Chekuri, C., Cheung, T.Y., Dai, Z., Goel, A., Guha, S., Li, M.: Approximation algorithms for directed Steiner problems. In: Proc. 9th ACM-SIAM Sympos. Discrete Algorithms (SODA), pp. 192–200 (1998)

    Google Scholar 

  5. Chepoi, V., Nouioua, K., Vaxès, Y.: A rounding algorithm for approximating minimum Manhattan networks. Theor. Comput. Sci. 390(1), 56–69 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chin, F., Guo, Z., Sun, H.: Minimum Manhattan network is NP-complete. Discrete Comput. Geom. 45, 701–722 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Das, A., Gansner, E.R., Kaufmann, M., Kobourov, S., Spoerhase, J., Wolff, A.: Approximating minimum Manhattan networks in higher dimensions. ArXiv e-print abs/1107.0901 (2011)

    Google Scholar 

  8. Feldman, M., Kortsarz, G., Nutov, Z.: Improved approximating algorithms for directed Steiner forest. In: Proc. 20th ACM-SIAM Sympos. Discrete Algorithms (SODA), pp. 922–931 (2009)

    Google Scholar 

  9. Fuchs, B., Schulze, A.: A simple 3-approximation of minimum Manhattan networks. Tech. Rep. 570, Zentrum für Angewandte Informatik Köln (2008)

    Google Scholar 

  10. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Approximating a minimum Manhattan network. Nordic J. Comput. 8, 219–232 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Guo, Z., Sun, H., Zhu, H.: Greedy construction of 2-approximation minimum Manhattan network. In: Hong, S., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 4–15. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Kato, R., Imai, K., Asano, T.: An improved algorithm for the minimum Manhattan network problem. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 344–356. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Lam, F., Alexandersson, M., Pachter, L.: Picking alignments from (Steiner) trees. J. Comput. Biol. 10, 509–520 (2003)

    Article  Google Scholar 

  14. Lu, B., Ruan, L.: Polynomial time approximation scheme for the rectilinear Steiner arborescence problem. J. Comb. Optim. 4(3), 357–363 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Muñoz, X., Seibert, S., Unger, W.: The minimal Manhattan network problem in three dimensions. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 369–380. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Nouioua, K.: Enveloppes de Pareto et Réseaux de Manhattan: Caractérisations et Algorithmes. Ph.D. thesis, Université de la Méditerranée (2005)

    Google Scholar 

  17. Seibert, S., Unger, W.: A 1.5-approximation of the minimal Manhattan network problem. In: Deng, X., Du, D. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 246–255. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Soto, J.A., Telha, C.: Jump number of two-directional orthogonal ray graphs. In: Gülük, O., Woeginger, G. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 389–403. Springer, Heidelberg (2011)

    Google Scholar 

  19. Zelikovsky, A.: A series of approximation algorithms for the acyclic directed Steiner tree problem. Algorithmica 18(1), 99–110 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Das, A., Gansner, E.R., Kaufmann, M., Kobourov, S., Spoerhase, J., Wolff, A. (2011). Approximating Minimum Manhattan Networks in Higher Dimensions. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23719-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23718-8

  • Online ISBN: 978-3-642-23719-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics