Skip to main content

Temporal Prediction and Spatial Regularization in Differential Optical Flow

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6915))

Abstract

In this paper we present an extension to the Bayesian formulation of multi-scale differential optical flow estimation by Simoncelli et. al.[1]. We exploit the observation that optical flow is consistent in consecutive time frames and thus propagating information over time should improve the quality of the flow estimation. This propagation is formulated via insertion of additional Kalman filters that filter the flow over time by tracking the movement of each pixel. To stabilize these filters and the overall estimation, we insert a spatial regularization into the prediction lane. Through the recursive nature of the filter the regularization has the ability to perform filling-in of missing information over extended spatial extents. We benchmark our algorithm, which is implemented in the nVidia Cuda framework to exploit the processing power of modern graphical processing units (GPUs), against a state-of-the-art variational flow estimation algorithm that is also implemented in Cuda. The comparison shows that, while the variational method yields somewhat higher precision, our method is more than an order of magnitude faster and can thus operate in real-time on live video streams.

The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement n°215866, project SEARISE.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simoncelli, E.P., Jahne, B., Haussecker, H., Geissler, P.: Bayesian Multi-Scale Differential Optical Flow, vol. 2, pp. 397–422. Academic Press, San Diego (1999)

    Google Scholar 

  2. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of Imaging Understanding Workshop, pp. 121–130 (1981)

    Google Scholar 

  3. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  4. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8 (October 2007)

    Google Scholar 

  5. Hauagge, D.C.: Homepage, http://www.liv.ic.unicamp.b/~hauagge/Daniel_Cabrini_Hauagge/Home_Page.html .

  6. Rannacher, J.: Realtime 3d motion estimation on graphics hardware, Master’s thesis at Heidelberg University (2009)

    Google Scholar 

  7. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic Huber-L1 Optical Flow. In: Proceedings of British Machine Vision Conference (BMVC) (September 2009)

    Google Scholar 

  8. Ferrera, V.P., Wilson, H.R.: Perceived direction of moving two-dimensional patterns. Vision Research 30(2), 273–287 (1990)

    Article  Google Scholar 

  9. Bayerl, P., Neumann, H.: A fast biologically inspired algorithm for recurrent motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(2), 246–260 (2007)

    Article  Google Scholar 

  10. Chessa, M., Sabatini, S.P., Solari, F., Bisio, G.M.: A recursive approach to the design of adjustable linear models for complex motion analysis. In: Proceedings of the Fourth Conference on IASTED International Conference: Signal Processing, Pattern Recognition, and Applications, pp. 33–38. ACTA Press, Anaheim (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoeffken, M., Oberhoff, D., Kolesnik, M. (2011). Temporal Prediction and Spatial Regularization in Differential Optical Flow. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2011. Lecture Notes in Computer Science, vol 6915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23687-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23687-7_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23686-0

  • Online ISBN: 978-3-642-23687-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics