Skip to main content

Efficiency Optimization of Trainable Feature Extractors for a Consumer Platform

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6915))

Abstract

This paper proposes an algorithmic optimization for the feature extractors of biologically inspired Convolutional Neural Networks (CNNs). CNNs are successfully used for different visual pattern recognition applications such as OCR, face detection and object classification. These applications require complex networks exceeding 100,000 interconnected computational nodes. To reduce the computational complexity a modified algorithm is proposed; real benchmarks show 65 - 83% reduction, with equal or even better recognition accuracy. Exploiting the available parallelism in CNNs is essential to reduce the computational scaling problems. Therefore the modified version of the algorithm is implemented and evaluated on a GPU platform to demonstrate the suitability on a cost effective parallel platform. A speedup of 2.5x with respect to the standard algorithm is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chakradhar, S., Sankaradas, M., Jakkula, V., Cadambi, S.: A dynamically configurable coprocessor for convolutional neural networks. In: ISCA 2010: Proceedings of the 37th Annual International Symposium on Computer Architecture, pp. 247–257. ACM, New York (2010)

    Google Scholar 

  2. Farabet, C., Poulet, C., Han, J., LeCun, Y.: Cnp: An fpga-based processor for convolutional networks. In: International Conference on Field Programmable Logic and Applications, FPL 2009, pp. 32–37 (August 2009)

    Google Scholar 

  3. Garcia, C., Delakis, M.: Convolutional face finder: A neural architecture for fast and robust face detection. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1408–1423 (2004)

    Article  Google Scholar 

  4. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice Hall, Englewood Cliffs (2008)

    Google Scholar 

  5. Hinton, G.E.: Connectionist learning procedures. Artif. Intell. 40(1-3), 185–234 (1989)

    Article  Google Scholar 

  6. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  7. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  8. Lecun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: In Proceedings of CVPR 2004 (2004)

    Google Scholar 

  9. Nixon, M., Aguado, A.S.: Feature Extraction & Image Processing, 2nd edn. Academic Press, London (2008)

    Google Scholar 

  10. Nvidia: NVIDIA CUDA C Programming Guide 3.2. NVIDIA Corporation (2010)

    Google Scholar 

  11. Peemen, M., Mesman, B., Corporaal, C.: Speed sign detection and recognition by convolutional neural networks. In: Proceedings of the 8th International Automotive Congress, pp. 162–170 (2011)

    Google Scholar 

  12. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  13. Simard, P., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, pp. 958–962 (2003)

    Google Scholar 

  14. Szarvas, M., Yoshizawa, A., Yamamoto, M., Ogata, J.: Pedestrian detection with convolutional neural networks. In: Proceedings IEEE Intelligent Vehicles Symposium, Las Vegas, NV, pp. 224–229 (June 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peemen, M., Mesman, B., Corporaal, H. (2011). Efficiency Optimization of Trainable Feature Extractors for a Consumer Platform. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2011. Lecture Notes in Computer Science, vol 6915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23687-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23687-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23686-0

  • Online ISBN: 978-3-642-23687-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics