Skip to main content

Impact of Innovative Agricultural Practices of Carbon Sequestration on Soil Microbial Community

  • Chapter
  • First Online:
Carbon Sequestration in Agricultural Soils

Abstract

This chapter deals with the impact on soil microbiology of innovative management techniques for enhancing carbon sequestration. Within the MESCOSAGR project, the effect of different field treatments was investigated at three experimental sites differing in pedo-climatic characteristics. Several microbiological parameters were evaluated to describe the composition of soil microbial communities involved in the carbon cycle, as well as to assess microbial biomass and activity. Results indicated that both compost and catalyst amendments to field soils under maize or wheat affected microbial dynamics and activities, though without being harmful to microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adediran JA, de Baets N, Mnkeni PNS, Kiekens L, Muyima NYO, Thys A (2003) Organic waste materials for soil fertility improvement in the border region of the Eastern Cape, South Africa. Biol Agric Hortic 20:283–300

    Google Scholar 

  • Albiach R, Canet R, Pomares F, Ingelmo F (2000) Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresour Technol 75:43–48

    Article  CAS  Google Scholar 

  • Allievi L, Möller F (1992) A method based on plate count for enumerating N2O/N2-producing bacteria from nitrate in the soil. J Basic Microbiol 32:291–298

    Article  Google Scholar 

  • Allievi L, Quaroni S (2003) Gruppi generici di microrganismi. In Picci G, Nannipieri P (eds) Metodi di analisi microbiologica del suolo. MIPAF, FrancoAngeli, Rome

    Google Scholar 

  • Alvarez R, Santanatoglia J, Garcia R (1995) Effect of temperature on soil microbial biomass and its metabolic quotient in situ under different tillage systems. Biol Fertil Soils 19:227–230

    Article  Google Scholar 

  • Anderson JPE (1982) Soil respiration. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2, 2nd edn. ASA-CSSA-SSSA, Madison, WI

    Google Scholar 

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soil. Soil Biol Biochem 10:215–221

    Article  CAS  Google Scholar 

  • Anderson TH, Domsch KH (2010) Soil microbial biomass: the ecophysiological approach. Soil Biol Biochem 42:2039–2043

    Article  CAS  Google Scholar 

  • Andrews SS, Carroll CR (2001) Designing a soil quality assessment tool for sustainable agroecosystem management. Ecol Appl 11:1573–1585

    Article  Google Scholar 

  • Andrews SS, Flora CB, Mitchell JP, Karlen DL (2003) Grower’s perceptions and acceptance of soil quality indices. Geoderma 114:187–213

    Article  Google Scholar 

  • Bailey KL, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Till Res 72:169–180

    Article  Google Scholar 

  • Balesdent J, Chenu C, Balabane M (1999) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Till Res 53:215–230

    Article  Google Scholar 

  • Balota EL, Arnold CF, Andrade DS, Dick RP (2003) Microbial biomass in soil under different tillage and crop rotation systems. Biol Fertil Soils 33:15–20

    Article  Google Scholar 

  • Barot S, Blouin M, Fontaine S, Jouquet P, Lata JC, Mathieu J (2007) A tale of four stories: soil ecology, theory, evolution and the publication system. PLoS One 2(11):1248

    Article  Google Scholar 

  • Barzegar AR, Yousefi A, Daryashenas A (2002) The effect of addition of different amounts and types of organic materials on soil physical properties and yield of wheat. Plant Soil 247:295–301

    Article  CAS  Google Scholar 

  • Bastida F, Moreno J, Hernández T, Garcia C (2006) Microbial degradation index of soils in semiarid climate. Soil Biol Biochem 38:3463–3473

    Article  CAS  Google Scholar 

  • Bayley VL, Smith JL, Bolton H Jr (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol Biochem 34:997–1007

    Article  Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter decomposition, humus formation, carbon sequestration. Springer, Heidelberg

    Google Scholar 

  • Berg B, Söderström B (1979) Fungal biomass and nitrogen in decomposing Scots pine needle litter. Soil Biol Biochem 11:339–341

    Article  CAS  Google Scholar 

  • Bresson LM, Koch C, Le Bissonnais Y, Barriuso E, Lecomte V (2001) Soil surface structure stabilization by municipal waste compost application. Soil Sci Soc Am J 65:1804–1811

    Article  CAS  Google Scholar 

  • Bronick CJ, Lai R (2005) Soil structure and management: a review. Geoderma 124(1–2):3–22

    Article  CAS  Google Scholar 

  • Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–279

    Article  CAS  Google Scholar 

  • Buckley DH, Schmidt TM (2001) The structure of microbial communities in soil and the lasting impact of cultivation. Microb Ecol 42:11–21

    CAS  Google Scholar 

  • Bünemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms – a review. Aust J Soil Res 44:379–406

    Article  Google Scholar 

  • Burr TJ, Caesar A (1984) Beneficial plant bacteria. Crit Rev Plant Sci 2:1–20

    Article  Google Scholar 

  • Buyer JS, Roberts DP, Russek-Cohen E (2002) Soil and plant effects on microbial community structure. Can J Microbiol 48:955–964

    Article  CAS  Google Scholar 

  • Calbrix R, Barray S, Chabrerie O, Fourrie L, Laval K (2007) Impact of organic amendments on the dynamics of soil microbial biomass and bacterial communities in cultivated land. Appl Soil Ecol 35:511–522

    Article  Google Scholar 

  • Carpenter-Boggs L, Stahl PD, Lindstrom MJ, Schumacher TE (2003) Soil microbial properties under permanent grass, conventional tillage, and no-till management in South Dakota. Soil Till Res 71:15–23

    Article  Google Scholar 

  • Carter MR (2007) Long-term influence of compost on available water capacity of a fine sandy loam in a potato rotation. Can J Soil Sci 87:535–539

    Article  Google Scholar 

  • Chander K, Joergensen RG (2002) Decomposition of 14C labeled glucose in a Pb-contaminated soil remediated with synthetic zeolite and other amendments. Soil Biol Biochem 34:643–649

    Article  CAS  Google Scholar 

  • Chang YJ, Hussain AKMA, Stephen JR, Mullen MD, White DC, Peacock A (2001) Impact of herbicides on the abundance and structure of indigenous beta-subgroup ammonia-oxidizer communities in soil microcosms. Environ Toxicol Chem 20:2462–2468

    Article  CAS  Google Scholar 

  • Cheng W, Johson DW, Fu S (2003) Rhizosphere effects on decomposition: controls of plant species, phenology and fertilization. Soil Sci Soc Am J 67:1418–1427

    Article  CAS  Google Scholar 

  • Côté L, Brown S, Paré D, Fyles J, Bauhus J (2000) Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixed wood. Soil Biol Biochem 32:1079–1090

    Article  Google Scholar 

  • Debosz K, Petersen SO, Kure LK, Ambus P (2002) Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties. Appl Soil Ecol 19:237–248

    Article  Google Scholar 

  • de Graaf MA, Classen AT, Castro HF, Schadt CW (2010) Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol 188:1055–1064

    Article  CAS  Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Vojvodic-Vukovic M (2000) Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol Biochem 32:189–196

    Article  CAS  Google Scholar 

  • Diaz-Raviñaa M, Carballasa T, Aceaa MJ (1988) Microbial biomass and metabolic activity in four acid soils. Soil Biol Biochem 20:817–823

    Article  Google Scholar 

  • Feng Y, Motta AC, Reeves DW, Burmester CH, van Santen E, Osborn JA (2003) Soil microbial communities under conventional-till and no-till continuous cotton systems. Soil Biol Biochem 35:1693–1703

    Article  CAS  Google Scholar 

  • Filcheva EG, Tsadilas CD (2002) Influence of clinoptilotite and compost on soil properties. Commun Soil Sci Plant Anal 33:595–607

    Article  CAS  Google Scholar 

  • Franchini JC, Crispino CC, Souza RA, Torres E, Hungria M (2005) Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil Till Res 92:18–29

    Article  Google Scholar 

  • Frey SD, Elliott ET, Paustian K (1999) Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol Biochem 31:573–585

    Article  CAS  Google Scholar 

  • Garcia-Gil JC, Plaza C, Soler-Rovira P, Polo A (2000) Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol Biochem 32:1907–1913

    Article  CAS  Google Scholar 

  • Garcia Gil JC, Plaza C, Senesi N, Brunetti G, Polo A (2004) Effects of sewage sludge amendment on humic acids and microbiological properties of a semiarid Mediterranean soil. Biol Fertil Soils 39:320–328

    Article  CAS  Google Scholar 

  • Gelsomino A, Tortorella D, Cianci V, Petrovicôvá B, Sorgonà A, Piccolo A, Abenavoli MR (2010) Effects of a biomimetic iron-porphyrin on soil respiration and maize root morphology as by a microcosm experiment. J Plant Nutr Soil Sci 173:399–406

    Article  CAS  Google Scholar 

  • Gomez A (1998) The evaluation of compost quality. Trends Anal Chem 17:310–314

    Article  CAS  Google Scholar 

  • Harris JA, Birch P (1992) Land reclamation and restoration. In: Fry JC, Gadd GM, Herbert RA, Jones CW, Watson-Craik I (eds) Microbial control of pollution society for general microbiology, symposium 48. Cambridge University Press, Cambridge

    Google Scholar 

  • Hartz TK, Mitchell JP, Giannini C (2000) Nitrogen and carbon mineralization dynamics of manures and composts. HortScience 35:209–212

    Google Scholar 

  • Hedlund K (2002) Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biol Biochem 34:1299–1307

    Article  CAS  Google Scholar 

  • Helgason BL, Walley FL, Germida JJ (2009) Fungal and bacterial abundance in long-term no-till soils of the Northern Great Plains. Soil Sci Soc Am J 73:120–127

    Article  CAS  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431

    Article  CAS  Google Scholar 

  • Ibekwe AM, Kennedy AC, Frohne PS, Papiernik SK, Yang C-H, Crowley DE (2002) Microbial diversity along a transect of agronomic zones. FEMS Microbiol Ecol 39:183–191

    Article  CAS  Google Scholar 

  • Jaeger CH, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and aminoacid availability in soil around roots with bacterial sensors of sucrose and trypthophan. Appl Environ Microbiol 65:2685–2690

    CAS  Google Scholar 

  • Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Phil Trans R Soc B:Biol Sci 329:361–368

    Article  CAS  Google Scholar 

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd J (eds) Soil biochemistry, vol 5. Dekker, New York, pp 415–471

    Google Scholar 

  • Joergensen RG, Castillo X (2001) Impact of ecological and conventional arable management system on chemical and biological soil quality indices in Nicaragua. Soil Biol Biochem 33:1591–1597

    Article  Google Scholar 

  • Karlen DL, Andrews SS, Doran JW (2001) Soil quality: current concepts and applications. Adv Agron 74:1–40

    Article  CAS  Google Scholar 

  • Karlen DL, Ditzler CA, Andrews SS (2003) Soil quality: why and how? Geoderma 114:145–156

    Article  CAS  Google Scholar 

  • Kiikkilä O, Perkiömäki J, Barnette M, Derome J, Pennanen T, Tulisalo E, Fritze H (2001) In situ bioremediation through mulching of soil polluted by a copper-nickel smelter. J Environ Qual 30:1134–1143

    Article  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  CAS  Google Scholar 

  • Kluepfel D (1988) Screening of procaryotes for cellulose-and hemicellulose degrading enzymes. Methods Enzymol 160:180–186

    Article  CAS  Google Scholar 

  • Kuske CR, Ticknor LO, Miller ME, Dunbar JM, Davis JA, Barns SM, Belnap J (2002) Comparison of soil bacterial communities in rhizospheres of tree plant species and interspecies in a arid grassland. Appl Environ Microbiol 68:1854–1863

    Article  CAS  Google Scholar 

  • Kuster E, Williams ST (1964) Selection of media for isolation of Streptomycetes. Nature 202:928–929

    Article  Google Scholar 

  • Lu YC, Watkins B, Teasdale JR, Abdul-Baki AA (2000) Cover crops in sustainable food production. Food Rev Int 16:121–157

    Article  Google Scholar 

  • Luizao RCC, Bonde TA, Rosswall T (1992) Seasonal variation of soil microbial biomass – the effects of clearfelling a tropical rain forest and establishment of pasture in the Central Amazon. Soil Biol Biochem 24:805–813

    Article  Google Scholar 

  • Machulla G (2003) Soil microbial indicators and their environmental significance. J Soil Sediment 3:229

    Article  CAS  Google Scholar 

  • Mahmood T, Ali R, Hussain F, Tahir GR (2005) Seasonal changes in soil microbial biomass carbon under a wheat-maize cropping systemreceveing urea and farmyard manure in different combinations. Pak J Bot 37:105–117

    Google Scholar 

  • Marschner P, Yang C-H, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  • Marschner P, Marino W, Lieberei R (2002) Seasonal effects on microorganisms in the rhizosphere of two tropical plants in a polycolture agroforestry in Central Amazonia, Brazil. Biol Fertil Soil 35:68–71

    Article  Google Scholar 

  • Marschner P, Kandeler E, Marschner B (2003) Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35:453–461

    Article  CAS  Google Scholar 

  • Marzaioli R, D’Ascoli R, De Pascale RA, Rutigliano FA (2010) Soil quality in a Mediterranean area of Southern Italy as related to different land use types. Appl Soil Ecol 44:205–212

    Article  Google Scholar 

  • McCarthy AJ, Williams ST (1992) Actinomycetes as agents of biodegradation in the environment – a review. Gene 115:189–192

    Article  CAS  Google Scholar 

  • Olson FCW (1950) Quantitative estimates of filamentous algae. Trans Am Microsc Soc 69:272–279

    Article  Google Scholar 

  • Ouedraogo E, Mando A, Zombré NP (2001) Use of compost to improve soil properties and crop productivity under low input agricultural system in West Africa. Agric Ecosyst Environ 84:259–266

    Article  Google Scholar 

  • Parfitt RL, Yeates GW, Ross DJ, Mackay AD, Budding PJ (2005) Relationships between soil biota, nitrogen and phosphorus availability, and pasture growth under organic and conventional management. Appl Soil Ecol 28:1–13

    Article  Google Scholar 

  • Parkinson D (1994) Filamentous fungi. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part II microbiological and biochemical properties-sssa book series No. 5. Soil Science Society of America, Madison, WI, USA

    Google Scholar 

  • Paterson E, Sim A (1999) Rhizodeposition and C-partitioning of Lolium perenne in axenic culture affected by nitrogen supply and defoliation. Plant Soil 216:155–164

    Article  CAS  Google Scholar 

  • Paterson E, Sim A (2000) Effect of nitrogen supply and defoliation on loss of organic compounds from roots of Festuca rubra. J Exp Bot 51:1449–1457

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic, San Diego, CA

    Google Scholar 

  • Peixoto RS, Coutinho HLC, Madari B, Machado PLOA, Rumjanek NG, Van Elsas JD, Seldin L, Rosado AS (2006) Soil aggregation and bacterial community structure as affected by tillage and cover cropping in the Brazilian Cerrados. Soil Till Res 90:16–28

    Article  Google Scholar 

  • Pérez-Piqueres A, Edel-Hermann V, Alabouvette C, Steinberg C (2006) Response of soil microbial communities to compost amendments. Soil Biol Biochem 38:460–470

    Article  CAS  Google Scholar 

  • Perucci P, Dumontet S, Bufo SA, Mazzatura A, Casucci C (2000) Effects of organic amendment and herbicide treatment on soil microbial biomass. Biol Fertil Soils 32:17–23

    Article  CAS  Google Scholar 

  • Picci G, Nannipieri P (2003) Metodi di analisi microbiologica del suolo. [Methods of soil microbiological analysis]. MIPAF, FrancoAngeli, Rome

    Google Scholar 

  • Piccolo A, Spaccini R, Nieder R, Richter J (2004) Sequestration of a biologically labile organic carbon in soils by humified organic matter. Clim Change 67:329–343

    Article  CAS  Google Scholar 

  • Piccolo A, Conte P, Tagliatesta P (2005) Increased conformational rigidity of humic substances by oxidative biomimetic catalysis. Biomacromolecules 6:351–358

    Article  CAS  Google Scholar 

  • Piccolo A, Spaccini R, Nebbioso A, Mazzei P (2011) Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter. Environ Sci Technol. doi:10.1021/es201572f, just accepted

  • Prikryl Z, Vancura V (1980) Root exudates of plants. VI. Wheat root exudation as dependent on growth, concentration gradient of exudates and the presence of bacteria. Plant Soil 57:69–83

    Article  CAS  Google Scholar 

  • Reynolds HL, Hungate BA, Chapin FS III, D’Antonio CM (1997) Soil heterogeneity and plant competition in an annual grassland. Ecology 78:2076–2090

    Google Scholar 

  • Ros M, Hernandez MT, Garcia C (2003) Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biol Biochem 35:463–469

    Article  CAS  Google Scholar 

  • Rutigliano FA, D’Ascoli R, Virzo De Santo A (2004) Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biol Biochem 36:1719–1729

    Article  CAS  Google Scholar 

  • Sarathchandra SU, Lee A, Perrott KW, Rajan SSS, Oliver EHA, Gravett IM (1993) Effects of phosphate fertilizer applications on microorganisms in pastoral soil. Aust J Soil Res 31:299–309

    Article  CAS  Google Scholar 

  • Schloter M, Dilly O, Munch JC (2003) Indicators for evaluating soil quality. Agric Ecosyst Environ 98:255–262

    Article  Google Scholar 

  • Singh BK, Munro S, Potts JM, Millard P (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol 36:147–155

    Article  Google Scholar 

  • Singh BK, Dawson LA, Macdonald CA, Buckland SM (2009) Impact of biotic and abiotic interaction on soil microbial communities and functions: a field study. Appl Soil Ecol 41:239–248

    Article  Google Scholar 

  • Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    Article  CAS  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    Article  CAS  Google Scholar 

  • Smolander A, Kitunen V (2002) Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biol Biochem 34:651–660

    Article  CAS  Google Scholar 

  • Söderström B (1977) Vital staining of fungi in pure cultures and in soil with fluorescein-diacetate. Soil Biol Biochem 9:59–63

    Article  Google Scholar 

  • Söderström B (1979) Some problems in assessing the fluorescein-diacetative-active fungal biomass in soil. Soil Biol Biochem 11:147–148

    Article  Google Scholar 

  • Solaiman Z (2007) Measurements of soil microbial biomass and activity in soil. In: Varma A, Oelmüller R (eds) Advanced techniques in soil microbiology. Springer, Heidelberg

    Google Scholar 

  • Spaccini R, Piccolo A, Mbagwu JSC, Zena Teshale A, Igwe CA (2002) Influence of the addition of organic residues on carbohydrate content and structural stability of some highland soils in Ethiopia. Soil Use Manage 18:404–411

    Article  Google Scholar 

  • Sparling GP (1995) The soil biomass. In: Vaughan D, Malcolm RE (eds) Soil organic matter and biological activity. Nijhoff/Junk, Dordrecht, The Netherlands

    Google Scholar 

  • Sparling GP (1997) Soil microbial biomass, activity and nutrient cycling as indicators. In: Pankhurst C, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, New York

    Google Scholar 

  • Speir TW, van Schaik AP, Lloyd Jones AR, Kettles HA (2003) Temporal response of soil biochemical properties in a pastoral soil after cultivation following high application rates of undigested sewage sludge. Biol Fertil Soils 38:377–385

    Article  Google Scholar 

  • Standing D, Killham K (2007) The soil environment. In: van Elsas JD, Jansson JT, Trevors JT (eds) Modern soil microbiology, 2nd edn. Taylor & Francis/CRC, Boca Raton, USA

    Google Scholar 

  • Stotzky G (1997) Soil as environment for microbial life. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Dekker, New York, USA

    Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    CAS  Google Scholar 

  • Vancura V, Prikryl Z, Kalachova L, Wurst M (1977) Some quantitative aspects of root exudation. Ecol Bull 25:381–386 (Soil Org Comp Ecosyst)

    CAS  Google Scholar 

  • van Elsas JD, Trevors JT, Wellington EMH (2007) Modern soil microbiology, 2nd edn. Taylor & Francis/CRC, Boca Raton, USA

    Google Scholar 

  • van Overbeek LS, van Elsas JD (1995) Root exudate-induced promoter activity in pseudomonas fluorescent mutants in the wheat rhizosphere. Appl Environ Microbiol 61:890–898

    Google Scholar 

  • Vineela C, Wani SP, Srinivasarao C, Padmaja B, Vittal KPR (2008) Microbial properties of soils as affected by cropping and nutrient management practices in several long-term manurial experiments in the semi-arid tropics of India. Appl Soil Ecol 40:165–173

    Article  Google Scholar 

  • Wani SP, Lee KK (1995) Exploiting vesiculararbuscular mycorrhizae through crop and soil management practices. Mycorrhiza News 6(4):1–7

    Google Scholar 

  • Weil RR, Magdoff F (2004) Significance of soil organic matter to soil quality and health. In: Weil RR, Magdoff F (eds) Soil organic matter in sustainable agriculture. CRC, Boca Raton, FL, USA

    Google Scholar 

  • Wellington EMH, Toth IK (1994) Actinomycetes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part II microbiological and biochemical properties-SSSA book series No. 5. Soil Science Society of America, Madison, WI, USA

    Google Scholar 

  • Wieland G, Neumann R, Backhaus H (2001) Variation of soil microbial communities in soil, rhizosphere, and rhizoplan in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854

    Article  CAS  Google Scholar 

  • Winding A, Hund-Rinke K, Rutgers M (2005) The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:230–248

    Article  CAS  Google Scholar 

  • Wright AL, Hons FM, Lemon RG, McFarland ML, Nichols RL (2008) Microbial activity and soil C sequestration for reduced and conventional tillage cotton. Appl Soil Ecol 38:168–173

    Article  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  CAS  Google Scholar 

  • Zheljazkov VD, Warman PR (2003) Application of high Cu compost to Swiss chard and basil. Sci Tot Environ 302:13–26

    Article  CAS  Google Scholar 

  • Zhong WH, Cai ZC (2007) Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Appl Soil Ecol 36:84–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Moschetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ventorino, V., De Marco, A., Pepe, O., De Santo, A.V., Moschetti, G. (2012). Impact of Innovative Agricultural Practices of Carbon Sequestration on Soil Microbial Community. In: Piccolo, A. (eds) Carbon Sequestration in Agricultural Soils. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23385-2_6

Download citation

Publish with us

Policies and ethics