Skip to main content

Refractive Index Structures in Polymers

  • Chapter
  • First Online:
Book cover Femtosecond Laser Micromachining

Part of the book series: Topics in Applied Physics ((TAP,volume 123))

Abstract

Refractive index structuring of poly(methyl methacrylate) (PMMA) by femtosecond (fs) laser irradiation is discussed, including writing conditions defined by wavelength, pulse duration, and associated photochemistry. The aim is to determine optimal conditions for refractive index modification, Δn without doping for photosensitivity. The work presented here forms a generic methodology for other polymers. Nanostructuring using holographic optics and precise control of beam parameters has versatile application for three-dimensional (3D) photonic devices. Self-focusing and filamentation at various depths below the surface of bulk PMMA are discussed together with parallel processing using a spatial light modulator. Applications of refractive index structures in polymers include microfluidics, lab-on-a-chip, organic optoelectronic devices, and gratings in polymer optical fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.J. Tomlinson, I.P. Kaminov, E.A. Chandross, R.L. Fork, W.T. Silf-vast, Photoinduced refractive index increase in poly (methyl methacrylate) and its applications. Appl. Phys. Lett. 16(12), 486–489 (1970)

    Article  ADS  Google Scholar 

  2. J.P. Alison, Photodegradation of poly (methyl methacrylate). J. Polym. Sci. Part A: Polym. Chem. 4(5PA1), 1209–1221 (1966)

    Google Scholar 

  3. J.M. Moran, I.P. Kaminov, Properties of holographic gratings photoinduced in polymethyl methacrylate. Appl. Opt. 12(8), 1964–1970 (1973)

    Article  ADS  Google Scholar 

  4. A. Torikai, M. Ohno, K. Fueki, Photodegradation of poly(methyl methacrylate) by monochromatic light: quantum yield, effect of wavelengths, and light intensity. J. Appl. Polym. Sci. 41(5–6), 1023–1032 (1990)

    Article  Google Scholar 

  5. T. Mitsuoka, A. Torikai, K. Fueki, Wavelength sensitivity of the photodegradation of poly(methyl methacrylate). J. Appl. Polym. Sci. (6), 1027–1032 (1993)

    Article  Google Scholar 

  6. A. Torikai, T. Mitsuoka, Electron spin resonance studies on poly(methyl methacrylate) irradiated with monochromatic light. J. Appl. Polym. Sci. 55(12), 1703–1706 (1995)

    Article  Google Scholar 

  7. G.D. Peng, Z. Xiong, P.L. Chu, Photosensitivity and gratings in dye-doped polymer optical fibers. Opt. Fibre Technol. 5, 242–251, (1999)

    Article  ADS  Google Scholar 

  8. Z. Xiong, G.D. Peng, B. Wu, P.L. Chu, Highly tunable bragg gratings in single-mode polymer optical fibers. IEEE Photon. Technol. Lett. 11(3), 352–354 (1999)

    Article  ADS  Google Scholar 

  9. J. Marotz, Holographic storage in sensitized poly (methyl methacrylate) blocks. Appl. Phys. B-Photophys. Laser Chem. 37(4), 181–187 (1985)

    Article  ADS  Google Scholar 

  10. S. Küper, M. Stuke. Ablation of uv-transparent materials with femtosecond uv excimer laser-pulses. In Laser- and Particle-Beam Chemical Processes on Surfaces, volume 129 of Materials Research Society Conference Proceedings, pages 375–384 (1989)

    Google Scholar 

  11. N. Bityurin, S. Muraviov, A. Alexandrov, A. Malyshev, UV laser modifications and etching of polymer films (PMMA) below the ablation threshold. Appl. Surf. Sci. 109–110, 270–274 (1997)

    Article  Google Scholar 

  12. A.K. Baker, P.E. Dyer, Refractive-index modification of poly methyl-methacrylate (pmma) thin films by krf-laser irradiation. Appl. Phys. A-Mater. Sci. Process. 57(6), 543–544 (1993)

    Article  ADS  Google Scholar 

  13. C. Wochnowski, M.A.S. Eldin, S. Metev, Uv-laser-assisted degradation of poly(methyl methacrylate). Polym. Degrad. Stabil. 89(2), 252–264, (2005)

    Article  Google Scholar 

  14. C. Wochnowski, S. Metev, G. Sepold, UV-laser-assisted modification of the optical properties of polymethylmethacrylate. Appl. Surf. Sci. 154, 706–711 (2000)

    Article  ADS  Google Scholar 

  15. A.A. Miller, E.J. Lawton, J.S. Balwit, Effect of chemical structure of vinyl polymers on crosslinking and degradation by ionizing radiation. J. Polym. Sci. 14(77), 503–504 (1954)

    Article  ADS  Google Scholar 

  16. P.J. Scully, R. Bartlett, S. Caulder, P. Eldridge, R. Chandy, J. McTavish, V. Alexiou, I. P. Clarke, M. Towrie, A.W. Parker. UV laser photo-induced refractive index changes in poly methyl methacrylate and plastic optical fibres for application as sensors and devices. 14th International Conference on Optical Fiber Sensors, 4185, 854–857 (2000)

    Google Scholar 

  17. P.J. Scully, D. Jones, D.A. Jaroszynski. Writing refractive index gratings in perspex and polymer optical fibre using femtosecond laser irradiation. In Photon 02, Cardiff, 2002. IOP

    Google Scholar 

  18. P.J. Scully, D. Jones, D.A. Jaroszynski, Femtosecond laser irradiaton of polymethylmethacrylate for refractive index gratings. J. Optics A Pure Appl. Opt. 5, S92–S96 (2003)

    Article  ADS  Google Scholar 

  19. A. Baum, P.J. Scully, M. Basanta, C. L. Thomas, P. Fielden, N. Goddard, W. Perrie, P. Chalker, Photochemistry of refractive index structures in poly(methyl methacrylate) by femtosecond laser irradiation. Opt. Lett. 32(2), 190–192 (2007)

    Article  ADS  Google Scholar 

  20. N.M. Bityurin, A.I. Korytin, S.V. Muraviov, A.M. Yurkin, Second harmonic of ti:sapphire femtosecond laser as a possible tool for point-like 3D optical information recording. In Laser Applications in Microelectronic and Optoelectronic Manufacturing IV, volume 3618 of Proceedings of SPIE, p. 122–129 (1999)

    Google Scholar 

  21. Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, Z.X. Zhou, Single femtosecond pulse holography using polymethyl methacrylate. Opt. Exp. 10(21), 1173–1178 (2002)

    ADS  Google Scholar 

  22. A. Zoubir, C. Lopez, M. Richardson, K. Richardson, Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate). Opt. Lett. 29(16), 1840–1842 (2004)

    Article  ADS  Google Scholar 

  23. K. Ohta, M. Kamata, M. Obara, N. Sawanobori, Optical waveguide fabrication in new glasses and pmma with temporally tailored ultrashort laser. In Commercial and Biomedical Applications of Ultrafast Lasers IX, volume 5340 of Proceedings of SPIE, p. 172–178, (2004)

    Google Scholar 

  24. C.T. Kauter, B. Koesters, P. Quis, E. Trommsdorff, M. Buck, C.-J. Diem, G. Schreyer, P.R. Szigeti, Herstellung und Eigenschaften von Acrylglaesern Polymethacrylatein Kunststoff-Handbuch volume 4, Hanser Munich (1975)

    Google Scholar 

  25. S. Sowa, W. Watanabe, T. Tamaki, J. Nishi, K. Itoh. Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses. Opt. Exp. 14(1), 291–297 (2006)

    Article  ADS  Google Scholar 

  26. C. Wochnowski, Y. Cheng, K. Meteva, K. Sugioka, K. Midorikawa, S. Metev, Femtosecond-laser induced formation of grating structures in planar polymer substrates. J. Opt. A-Pure Appl. Opt. 7(9), 493–501 (2005)

    Article  ADS  Google Scholar 

  27. F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, Sub-diffraction limited structuring of solid targets with femtosecond laser pulses. Opt. Exp. 7(2), 41–49 (2000)

    Article  ADS  Google Scholar 

  28. J.W. Chan, T.R. Huser, S.H. Risbud, J.S. Hayden, D. M. Krol, Waveguide fabrication in phosphate glasses using femtosecond laser pulses. Appl. Phys. Lett. 82(15), 2371–2373 (2003)

    Article  ADS  Google Scholar 

  29. M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, Densification involved in the UV-based photosensitivity of silica glasses and optical fibers. J. Lightwave Technol. 15(8), 1329–1342 (1997)

    Article  ADS  Google Scholar 

  30. D.M. Krol, J.W. Chan, T.R. Huser, S.H. Risbud, J.S. Hayden Fs-laser fabrication of photonic structures in glass: The role of glass composition. Proc. SPIE 5662, 30–39 (2004)

    Google Scholar 

  31. W.J. Reichman, D.M. Krol, L. Shah, F. Yoshino, A. Araj, S.M. Eaton, P.R. Herman, A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems. J. Appl. Phys. 99(12), (2006)

    Google Scholar 

  32. T.K. Gaylord, M.G. Moharam, Analysis and applications of optical diffraction by gratings. Proc. IEEE 73, 894–937 (1985)

    Article  Google Scholar 

  33. S. Baudach, J. Bonse, J. Krueger, W. Kautek, Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate. Appl. Surf. Sci. 154–155, 555–560 (2000)

    Article  Google Scholar 

  34. J. Krueger, S. Martin, H. Maedebach, L. Urech, T. Lippert, A. Wokaun, W. Kautek, Femto- and nanosecond laser treatment of doped polymethylmethacrylate. Appl. Surf. Sci. 247, 406–411 (2005)

    Article  ADS  Google Scholar 

  35. J. Ihlemann, F. Beinhorn, H. Schmidt, K. Luther, J. Troe, Plasma and plume effects on UV laser ablation of polymers. Proc. SPIE, 5448, 572–580 (2004)

    Article  ADS  Google Scholar 

  36. W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, F. Krausz, Appl. Phys. Lett. 69, 3146 (1996)

    Article  ADS  Google Scholar 

  37. H.C. Guo, H.B. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, Q.H. Gong, J. Opt. A 6, 787 (2004)

    Article  ADS  Google Scholar 

  38. A. Baum, P.J. Scully, W. Perrie, D. Jones, R. Issac, D.A. Jaroszynski, Pulse-duration dependency of femtosecond laser refractive index modification in poly(methyl methacrylate). Opt. Lett. 33, 651–653 (2008)

    Article  ADS  Google Scholar 

  39. D.N. Nikogosyan Multi-photon high-excitation-energy approach to fibre grating inscription. Meas. Sci. Technol. 18, R1–R29 (2007)

    Google Scholar 

  40. C. Wochnowski, Y. Hanada, Y. Cheng, S. Metev, F. Vollertsen, K. Sugioka, K. Midorikawa, Femtosecond-laser-assisted wet chemical etching of polymer materials. J. Appl. Polym. Sci. 100, 1229–1238 (2006)

    Article  Google Scholar 

  41. C. Schaffer, A. Brodeur, E. Mazur, Meas. Sci. Technol. 12, 1784 (2001)

    Article  ADS  Google Scholar 

  42. J. Liggat, in Polymer Handbook, 4th edn., ed. by J. Brandrup, E.H. Immergut, E.A. Grulke, A. Abe, D.R. Bloch, (Wiley, 2005), II/456

    Google Scholar 

  43. M.A. Wochnowski, S. Eldin, S. Metev, UV-laser-assisted degradation of poly (methylmethacylate). Polym. Degrad. Stab. 88, 2975–2978 (2005)

    Google Scholar 

  44. G.B. Blanchet, P. Cotts, C.R. Fincher, Incubation: Subthreshold ablation of poly-(methyl methacrylate) and nature of the decomposition pathways. J. Appl. Phys. 88, 2975–2978 (2000)

    Article  ADS  Google Scholar 

  45. E. Süske, T. Scharf, H.-U. Krebs, E. Panchenko, T. Junkers, M. Egorov, M. Buback, H. Kijewski, Tuning of cross-linking and mechanical properties of laser-deposited poly(methyl methacrylate) films. J. Appl. Phys. 97(063501), 1–4 (2005)

    Google Scholar 

  46. T.G. Fox, S. Loshaek, Influence of molecular weight and degree of crosslinking on the specific volume and glass temperature of polymers. J. Polym. Sci. XV, 371–390 (1955)

    Google Scholar 

  47. S. Küper, S. Modaressi, M. Stuke, J. Phys. Chem. 94, 7514 (1990)

    Article  Google Scholar 

  48. A. Zoubir, M. Richardson, L. Canioni, A. Brocas, L. Sarger, Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication. J. Opt. Soc. Am. B 22(10), 2138–2143 (2005)

    Article  ADS  Google Scholar 

  49. I. Zailer, J.E.F. Frost, V. Chabasseur-Molneux, C. J.B. Ford, M. Pepper, Crosslinked PMMA as a high-resolution negative resist for electron beam lithography and applications for physics of low-dimensional structures. Semicond. Sci. Technol. 11, 1235–1238 (1996)

    Article  ADS  Google Scholar 

  50. V. Lucarini, J.J. Saarinen, K.E. Peiponen, E.M. Vartiainen, Kramers-Kronig relations in Optical Materials Research (Springer, Berlin, 2005)

    Google Scholar 

  51. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Courain, L. Berge, Self-guided propagation of ultrafast IR laser pulses in fused silica. Phys. Rev. Lett. 87(21) (2001)

    Google Scholar 

  52. Z. Wu, H. Jiang, L. Luo, H. Guo, H. Yang, Q. Gong, Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica. Opt. Lett. 27(6) (2002)

    Google Scholar 

  53. I.M. Burakov, N.M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses. J. Appl. Phys. 101, 043506 (2007)

    Article  ADS  Google Scholar 

  54. A. Saliminia, N.T. Nguyen, S.L. Chin, R. Vallee, The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses. Opt. Comm. 241, 529–583 (2004)

    Article  ADS  Google Scholar 

  55. N. Uppal, P.S. Shiakolas, M. Rizwan, Three dimensional waveguide fabrication in PMMA using femtosecond laser micromachining system. Micromachining Microfabrication Process Technology X111. Proc. SPIE 6882, 68820I (2008)

    Google Scholar 

  56. M. Miwa, S. Juodkazis, S. Matsuo, H. Misawa, Femtosecond two-photon stereo-lithography. Appl. Phys. A 73, 561–566 (2001)

    Google Scholar 

  57. W. Watanabe, Femtosecond filamentary modifications in bulk polymer materials. Laser Phys. 19(2), 342–345 (2009)

    Article  ADS  Google Scholar 

  58. C. Hnatkovsky, R.S. Taylor, E. Semova, V.R. Bhardwaj, D.M. Raynor, P.B. Corkum, High-resolution study of photoinduced modification in fused silica produced by tightly focused femtosecond laser beam in the presence of aberrations. J. Appl. Phys. 98, 01357 (2005)

    Google Scholar 

  59. D. Liu, Y. Li, R. An, Y. Dou, H. Yang, Q. Gong, Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing. Appl. Phys. A 84, 257–260 (2006)

    Article  ADS  Google Scholar 

  60. Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, K. Watkins, High throughput diffractive multi-beam femtoseond laser processing using a spatial light modulator. Appl. Surf. Sci. 255, 2284–2289 (2008)

    Article  ADS  Google Scholar 

  61. Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M.C. Sharp, E. Fearon, G. Dearden, K.G. Watkins, Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring. Appl. Surf. Sci. 255(13–14), 6582–6588 (2009)

    Article  ADS  Google Scholar 

  62. D. Liu, Z. Kuang, W. Perrie, P.J. Scully, A. Baum, S.P. Edwardson, E. Fearon, G. Dearden, K.G. Watkins, High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings. Appl. Phys. B: Lasers Optic 101(4), 817–823 (2010)

    Article  ADS  Google Scholar 

  63. H. Kogelnik, Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48, 2909 (1969)

    Google Scholar 

  64. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I.V. Hertel, R. Stoian, Dynamic ultrafast laser spatial tailoring for parallel micro-machining of photonic devices in transparent materials. Optics Exp. 17(3531) (2009)

    Google Scholar 

  65. Y. Chen, L. Zhang, G. Chen, Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips. Electrophoresis 29, 1801–1814 (2008)

    Article  Google Scholar 

  66. M. Silva-Lopez, Fender, A., MacPherson, W.N., Barton, J.S., Jones, J.D.C., Zhao, D., Dobb, H., Webb, D.J., Zhang, L., Bennion, I., Strain and temperature sensitivity of a single-mode polymer optical fiber, Opt. Lett. 30, 3129–3131 (2005)

    Google Scholar 

  67. K. Kalli, H.L. Dobb, D.J. Webb, K. Carroll, M. Komodromos, C. Themistos, G.D. Peng, Q. Fang, I.W. Boyd, Electrically tunable Bragg gratings in single-mode polymer optical fiber. Opt. Lett. 32, 214–216 (2007)

    Article  ADS  Google Scholar 

  68. H. Dobb, K. Carroll, D.J. Webb, K. Kalli, M. Komodromos, C. Themistos, G.D. Peng, A. Argyros, M.C.J. Large, M.A. van Eijkelenborg, Q. Fang, I.W. Boyd, Grating based devices in polymer optical fibre. Opt. Sens. II 6189, 18901–18901 (2006)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Engineering and Physical Sciences Research Council, the Unilever-Manchester Advanced Measurement Partnership, Vista Optics and Rinck Elektronik, Jena.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia J. Scully .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scully, P.J., Baum, A., Liu, D., Perrie, W. (2012). Refractive Index Structures in Polymers. In: Osellame, R., Cerullo, G., Ramponi, R. (eds) Femtosecond Laser Micromachining. Topics in Applied Physics, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23366-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23366-1_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23365-4

  • Online ISBN: 978-3-642-23366-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics