Skip to main content

Cyclotron Resonance Spectroscopy

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 150))

Abstract

We give an overview of the basic theory of cyclotron resonance, discuss some experimental aspects of cyclotron resonance spectroscopy in high, mostly pulsed magnetic fields, and finally discuss some recent cyclotron resonance experiments on various semiconductor materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A typical Bitter magnet at the High Field Magnet Laboratory at Radboud Universiteit Nijmegen delivers up to 33 T within 32-mm clear bore at room temperature, consumes ∼ 17 MW, and is cooled by the 140 l/s water flow at ∼ 30 bar [38].

  2. 2.

    There exists also another very special driving circuit based on giant motor generator [43]. As usual, together with evident advantages, including the possibility to obtain arbitrary pulse shapes, there are disadvantages like a high-frequency noise in magnetic field caused by mechanical vibration that propagates into the current circuits.

  3. 3.

    Recently, the FMS method was also demonstrated for pulsed magnets using rapid scan time-domain spectroscopy [46].

  4. 4.

    The observability condition for the cyclotron resonance is μB > 1. A magnetic field greater than 10 T is required in order to resolve the cyclotron resonance line when the carrier mobility is \(\mu = 1, 000\,{\mathrm{cm}}^{2}\)/Vs.

  5. 5.

    For an effective mass \({m}^{{_\ast}} = 0.13\), which is almost twice as much as in bulk GaAs, the cyclotron frequency at 50 T would correspond to a resonance wavelength of \(\lambda = 17.5\,\mu \mathrm{m}\).

  6. 6.

    Due to strong spin–orbit interaction in the valence band, the hole spin is always replaced by the full angular momentum.

References

  1. G. Dresselhaus, A.F. Kip, C. Kittel, Phys. Rev. 92, 827 (1953)

    Article  ADS  Google Scholar 

  2. G. Dresselhaus, A.F. Kip, C. Kittel, Phys. Rev. 98, 369 (1955)

    ADS  Google Scholar 

  3. J. Kono, in Methods in Materials Research, ed. by E.N. Kaufmann, R. Abbaschian, A. Bocarsly, C.-L. Chien, D. Dollimore, B. Doyle, A. Goldman, R. Gronsky, S. Pearton, J. Sanchez (Wiley, New York, 2001), Unit 9b.2

    Google Scholar 

  4. N. Miura, Physics of Semiconductors in High Magnetic Fields (Oxford University Press, Oxford, 2008)

    Google Scholar 

  5. C. Hamaguchi, Basic Semiconductor Physics (Springer, Berlin, 2001)

    MATH  Google Scholar 

  6. G. Landwehr, E.I. Rashba (eds.), Landau Level Spectroscopy (Elsevier, Amsterdam, 1991)

    Google Scholar 

  7. G. Lindemann, R. Lassnig, W. Seidenbusch, E. Gornik, Phys. Rev. B 28, 4693 (1983)

    Article  ADS  Google Scholar 

  8. M. Helm, W. Knap, W. Seidenbusch, R. Lassnig, E. Gornik, R. Triboulet, L.L. Taylor, Solid State Commun. 53, 547 (1985)

    Article  ADS  Google Scholar 

  9. K. Unterrainer, C. Kremser, E. Gornik, C.R. Pidgeon, Yu.L. Ivanov, E.E. Haller, Phys. Rev. Lett. 64, 2277 (1990)

    Article  ADS  Google Scholar 

  10. J. Schneider, Phys. Rev. Lett. 2, 504 (1959)

    Article  ADS  Google Scholar 

  11. J.L. Hirshfield, J.M. Wachtel, Phys. Rev. Lett. 12, 533 (1964)

    Article  ADS  Google Scholar 

  12. P. Pfeffer, W. Zawadzki, Phys. Rev. B 74, 115309 (2006)

    Article  ADS  Google Scholar 

  13. W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999)

    Article  ADS  Google Scholar 

  14. A. Lindsay, E.P. O’Reilly, Phys. Rev. Lett. 93, 196402 (2004)

    Article  ADS  Google Scholar 

  15. P.M. Krstajic, F.M. Peeters, M. Helm, Solid State Commun. 150, 1575 (2010)

    Article  ADS  Google Scholar 

  16. J.M. Luttinger, Phys. Rev. 102 1030 (1956)

    Article  ADS  MATH  Google Scholar 

  17. O. Drachenko, D.V. Kozlov, V.Y.a. Aleshkin, V.I. Gavrilenko, K.V. Maremyanin, A.V. Ikonnikov, B.N. Zvonkov, M. Goiran, J. Leotin, G. Fasching, S. Winnerl, H. Schneider, J. Wosnitza, M. Helm, Phys. Rev. B 79, 073301 (2009)

    Google Scholar 

  18. E. Gornik, Phys. Rev. Lett. 29, 595 (1972), and in [6]

    Google Scholar 

  19. B.D. McCombe, R. Kaplan, R.J. Wagner, E. Gornik, W. Müller, Phys. Rev. B 13, 2536 (1976)

    Article  ADS  Google Scholar 

  20. S. Das Sarma, F. Stern, Phys. Rev. B 32, 8442 (1985)

    Article  ADS  Google Scholar 

  21. A. Gold, Phys. Rev. B 38, 10798 (1988)

    Article  ADS  Google Scholar 

  22. S. Syed, M.J. Manfra, Y.J. Wang, R.J. Molnar, H.L. Stormer, Appl. Phys. Lett. 84, 1507 (2004)

    Article  ADS  Google Scholar 

  23. P.N. Argyres, J.L. Sigel, Phys. Rev. B 10, 1139 (1974)

    Article  ADS  Google Scholar 

  24. V.K. Arora, Phys. Rev. B 14, 679 (1976)

    Article  ADS  Google Scholar 

  25. W. Götze, J. Hajdu, J. Phys. C Solid State Phys. 11, 3993 (1978)

    Article  ADS  Google Scholar 

  26. T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)

    Article  ADS  Google Scholar 

  27. Y. Shiwa, A. Ishihara, J. Phys. C Solid State Phys. 16, 4853 (1983)

    Article  ADS  Google Scholar 

  28. X. Wu, F.M. Peeters, Phys. Rev. B 41, 3109 (1990)

    Article  ADS  Google Scholar 

  29. G.M. Summers, R.J. Warburton, J.G. Michels, R.J. Nicholas, J.J. Harris, C.T. Foxon, Phys. Rev. Lett. 70, 2150 (1993)

    Article  ADS  Google Scholar 

  30. M.A. Hopkins, R.J. Nicholas, D.J. Barnes, M.A. Brummell, J.J. Harris, C.T. Foxon, Phys. Rev. B 39, 13302 (1989)

    Article  ADS  Google Scholar 

  31. H. Drexler, P. Graf, M. Besson, E. Gornik, G. Weimann, R. Lassnig, Phys. Rev. B 44, 3105 (1991)

    Article  ADS  Google Scholar 

  32. J.R. Apel, T.O. Poehler, C.R. Westgate, R.I. Joseph, Phys. Rev. B 4, 436 (1971)

    Article  ADS  Google Scholar 

  33. N.C. Jarosik, B.D. McCombe, B.V. Shanabrook, J. Comas, J. Ralston, G. Wicks, Phys. Rev. Lett. 54, 1283 (1985)

    Article  ADS  Google Scholar 

  34. W. Zawadzki, P. Pfeffer, S.P. Najda, H. Yokoi, S. Takeyama, N. Miura, Phys. Rev. B 49, 1705 (1994), and W. Zawadzki, in [6]

    Google Scholar 

  35. U. Merkt, Phys. Rev. Lett. 76, 1134 (1996)

    Article  ADS  Google Scholar 

  36. J. Kono, S.T. Lee, M.S. Salib, G.S. Herold, A. Petrou, B.D. McCombe, Phys. Rev. B 52, R8654 (1995)

    Article  ADS  Google Scholar 

  37. http://www.oxford-instruments.com/

  38. http://en.wikipedia.org/wiki/Francis_Bitter

  39. http://www.ru.nl/hfml/

  40. http://ghmfl.polycnrs-gre.fr/

  41. http://www.magnet.fsu.edu

  42. http://www.hzdr.de/db/Cms?pNid=580

  43. http://www.lanl.gov/orgs/mpa/nhmfl/

  44. http://www.toulouse.lncmi.cnrs.fr/

  45. F. Herlach, N. Miura (ed.), High Magnetic Fields: Science and Technology (World Scientific, Singapore, 2003

    Google Scholar 

  46. D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, J. Léotin, Opt. Express 18, 26163 (2010)

    Article  ADS  Google Scholar 

  47. W. Seidel, E. Cizmar, O. Drachenko, M. Helm, M. Justus, U. Lehnert, P. Michel, M. Ozerov, H. Schneider, R. Schurig, D. Stehr, M. Wagner, S. Winnerl, D. Wohlfarth, S. Zvyagin, S.C. Kehr, L.M. Eng, in Proceedings of the 30th International FEL Conference, Gyeongju, South Korea, 2008, http://accelconf.web.cern.ch/AccelConf/FEL2008/papers/tupph060.pdf

  48. D. Smirnov, C. Becker, O. Drachenko, V.V. Rylkov, H. Page, J. Leotin, C. Sirtori, Phys. Rev. B 66, 121305 (2002)

    Article  ADS  Google Scholar 

  49. D. Smirnov, O. Drachenko, J. Leotin, H. Page, C. Becker, C. Sirtori, V. Apalkov, T. Chakraborty, Phys. Rev. B 66, 125317 (2002)

    Article  ADS  Google Scholar 

  50. C. Becker, C. Sirtori, O. Drachenko, V. Rylkov, D. Smirnov, J. Leotin, Appl. Phys. Lett. 81, 2941 (2002)

    Article  ADS  Google Scholar 

  51. A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B.S. Williams, Q. Hu, J. Reno, Nature Photonics 3, 41 (2009)

    Article  ADS  Google Scholar 

  52. O. Drachenko, J. Galibert, J. Leotin, J.W. Tomm, M.P. Semtsiv, M. Ziegler, S. Dressler, U. Muller, W.T. Masselink, Appl. Phys. Lett. 87, 072104 (2005)

    Article  ADS  Google Scholar 

  53. T. Chakraborty, V.M. Apalkov, Adv. Phys. 52, 455 (2003)

    Article  ADS  Google Scholar 

  54. A. Rogalski, Progr. Quant. Electron. 27, 59 (2003)

    Article  ADS  Google Scholar 

  55. J.E. Huffman, A.G. Crouse, B.L. Halleck, T.V. Downes, T.L. Herter, J. Appl. Phys. 72, 273 (1992)

    Article  ADS  Google Scholar 

  56. B.A. Aronzon, A.N. Drachenko, V.V. Ryl’kov, J. Leotin, Semiconductors 40, 798 (2006)

    Google Scholar 

  57. O. Drachenko, S. Winnerl, H. Schneider, M. Helm, J. Wosnitza, J. Leotin, Rev. Sci. Instrum. 82, 033108 (2011)

    Article  ADS  Google Scholar 

  58. O.A. Mironov, M. Myronov, S. Durov, O. Drachenko, J. Leotin, Physica B 346, 548 (2004)

    Article  ADS  Google Scholar 

  59. M. de la Mare, Q. Zhuang, A. Krier, A. Patanè, S. Dhar, Appl. Phys. Lett. 95, 031110 (2009)

    Article  ADS  Google Scholar 

  60. R. Kudrawiec, J. Misiewicz, Q. Zhuang, A.M.R. Godenir, A. Krier, Appl. Phys. Lett. 94, 151902 (2009)

    Article  ADS  Google Scholar 

  61. M. Debbichi, A. Ben fredj, Y. Cuminal, J-L. Lazzari, S. Ridene, H. Bouchriha, M. Saïd, P. Christol, J. Phys. D Appl. Phys. 41, 215106 (2008)

    Google Scholar 

  62. S. Ridene, M. Debbichi, A. Ben fredj, M. Said, H. Bouchriha, J. Appl. Phys. 104, 063706 (2008)

    Google Scholar 

  63. Q. Zhuang, A. Godenir, A. Krier, J. Phys. D Appl. Phys. 41, 132002 (2008)

    Article  ADS  Google Scholar 

  64. S. Kuboya, Q.T. Thieua, W. Onoa, F. Nakajimaa, R. Katayamaa, K. Onabea, J. Cryst. Growth 298, 544 (2007)

    Article  ADS  Google Scholar 

  65. D.R. Hang, D.K. Shih, C.F. Huang, W.K. Hung, Y.H. Chang, Y.F. Chen, H.H. Lin, Physica E 22, 308 (2004)

    Article  ADS  Google Scholar 

  66. W.K. Hung, K.S. Cho, M.Y. Chern, Y.F. Chen, D.K. Shih, H.H. Lin, C.C. Lu, T.R. Yang, Appl. Phys. Lett. 80, 796 (2002)

    Article  ADS  Google Scholar 

  67. A. Patanè, W.H.M. Feu, O. Makarovsky, O. Drachenko, L. Eaves, A. Krier, Q.D. Zhuang, M. Helm, M. Goiran, G. Hill, Phys. Rev. B 80, 115207 (2009)

    Article  ADS  Google Scholar 

  68. O. Drachenko, A. Patanè, N.V. Kozlova, Q.D. Zhuang, A. Krier, L. Eaves, M. Helm, Appl. Phys. Lett. 98, 162109 (2011)

    Article  Google Scholar 

  69. P.N. Hai, W.M. Chen, I.A. Buyanova, H.P. Xin, C.W. Tu, Appl. Phys. Lett. 77, 1843 (2000)

    Article  ADS  Google Scholar 

  70. Y.J. Wang, X. Wei, Y. Zhang, A. Mascarenhas, H.P. Xin, Y.G. Hong, C.W. Tu, Appl. Phys. Lett. 82, 4453 (2003)

    Article  ADS  Google Scholar 

  71. F. Masia, A. Polimeni, G. Baldassarri Höger von Högersthal, M. Bissiri, M. Capizzi, P.J. Klar, W. Stolz, Appl. Phys. Lett. 82, 4474 (2003)

    Google Scholar 

  72. J. Wu, W. Shan, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H.P. Xin, C.W. Tu, Phys. Rev. B 64, 085320 (2001)

    Article  ADS  Google Scholar 

  73. Y. Zhang, A. Mascarenhas, H.P. Xin, C.W. Tu, Phys. Rev. B 61, 7479 (2000)

    Article  ADS  Google Scholar 

  74. R.J. Warburton, R.J. Nicholas, L.K. Howard, M.T. Emeny, Phys. Rev. B 43, 14124 (1991)

    Article  ADS  Google Scholar 

  75. S.Y. Lin, H.P. Wei, D.C. Tsui, J.F. Klem, Appl. Phys. Lett. 67, 2170 (1995)

    Article  ADS  Google Scholar 

  76. V.Y. Aleshkin, V.I. Gavrilenko, D.B. Veksler, L. Reggiani, Phys. Rev. B 66, 155336 (2002)

    Article  ADS  Google Scholar 

  77. A.V. Ikonnikov, K.E. Spirin, V.I. Gavrilenko, D.V. Kozlov, O. Drachenko, H. Schneider, M. Helm, Semiconductors 44, 1492 (2010)

    Article  ADS  Google Scholar 

  78. H. Arimoto, N. Miura, R.A. Stradling, Phys. Rev. B 67, 155319 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge collaborations with the group at the HLD Dresden led by J. Wosnitza, with our colleagues from the semiconductor spectroscopy group at HZDR (H. Schneider, S. Winnerl), with the group of V. Gavrilenko at Institute for Physics of Microstructures RAS, Nizhny Novgorod, Russia, and with Amalia Patanè (University of Nottingham, UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksiy Drachenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drachenko, O., Helm, M. (2012). Cyclotron Resonance Spectroscopy. In: Patane, A., Balkan, N. (eds) Semiconductor Research. Springer Series in Materials Science, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23351-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23351-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23350-0

  • Online ISBN: 978-3-642-23351-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics