Skip to main content

A Momentous Arrow of Time

  • Chapter
  • First Online:
The Arrows of Time

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 172))

Abstract

Quantum cosmology offers a unique stage to address questions of time related to its underlying (and perhaps truly quantum dynamical) meaning as well as its origin. Some of these issues can be analyzed with a general scheme of quantum cosmology, others are best seen in loop quantum cosmology. The latters status is still incomplete, and so no full scenario has yet emerged. Nevertheless, using properties that have a potential of pervading more complicated and realistic models, a vague picture shall be sketched here. It suggests the possibility of deriving a beginning within a beginningless theory, by applying cosmic forgetfulness to an early history of the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The laws are, of course, not completely time reflection symmetric, which might be exploited in the context discussed here [1].

  2. 2.

    It is interesting to note that the problem of time and motion becomes pressing when quantum gravity is considered. Quantum gravity is often tied to another expectation, that of discreteness or an atomic nature of space-time. Maybe solving the problem of time would lead us to establishing an atomic nature of time? If so, this would be reminiscent of a much older debate among pre-sokratic philosophers: Parmenides denied any reality to motion and change, which he logically argued to be pure illusion. His most basic statement was that nothingness does not exist, and so a body cannot move from where it is now to a place of empty space which was thought not to exist. The logical conflict was resolved by the atomists who accepted the notion of empty space and were led to the concept of material atoms.

  3. 3.

    A different perspective on the importance of gravitational degrees of freedom is discussed in [11].

  4. 4.

    In thermodynamics, coarse-graining plays an important role. Cosmic forgetfulness may be interpreted as forcing us to coarse-grain over many of the quantum variables. One should also note that cosmic forgetfulness is much stronger than decoherence (see e.g. [3]) since it appears even in exactly solvable models. It takes into account the specific dynamics of loop quantum cosmology, rather than being a generic property of quantum systems with many degrees of freedom.

  5. 5.

    Cosmic forgetfulness has been perceived as a challenge, heroically taken up in [55] by deriving bounds alternative to (11) for semiclassical states. However, those bounds are much weaker, allowing changes in the fluctuations by several orders of magnitude [56]. (Also this renewed challenge has been taken up in [57], though less heroically so.)

  6. 6.

    Numerical indications for a similarly sensitive behavior of inhomogeneities [62] already exist from Gowdy models with a loop-quantized homogeneous background [63].

  7. 7.

    James Joyce: Ulysses.

References

  1. Ch. Berger, L. Sehgal, CP violation and arrows of time evolution of a neutral Kor Bmeson from an incoherent to a coherent state. Phys. Rev. D 76, 036003 (2007) [arXiv:0704.1232]

    Google Scholar 

  2. K.V. Kuchař, Time and interpretations of quantum gravity, in Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, ed. by G. Kunstatter, D. E. Vincent, J.G. Williams, (World Scientific, Singapore, 1992)

    Google Scholar 

  3. H.D. Zeh, Open questions regarding the arrow of time, in this volume. (Springer, Berlin) [arXiv:0908.3780]

    Google Scholar 

  4. M. Gasperini, M. Giovannini, Quantum squeezing and cosmological entropy production. Class. Quantum Grav. 10, L133–L136 (1993)

    Google Scholar 

  5. M. Kruczenski, L.E. Oxman, M. Zaldarriaga, Large squeezing behaviour of cosmological entropy generation. Class. Quantum Grav. 11, 2317–2329 (1994)

    Google Scholar 

  6. D. Koks, A. Matacz, B.L. Hu, Entropy and uncertainty of squeezed quantum open systems. Phys. Rev. D 55, 5917–5935 (1997) (Erratum: [7])

    Google Scholar 

  7. D. Koks, A. Matacz, B.L. Hu, Phys. Rev. D 56, 5281 (1997)

    Google Scholar 

  8. C. Kiefer, D. Polarski, A.A. Starobinsky, Entropy of gravitons produced in the early universe. Phys. Rev. D 62, 043518 (2000)

    Google Scholar 

  9. M. Bojowald, B. Sandhöfer, A. Skirzewski, A. Tsobanjan, Effective constraints for quantum systems. Rev. Math. Phys. 21, 111–154 (2009) [arXiv:0804.3365]

    Google Scholar 

  10. M. Bojowald, R. Tavakol, Recollapsing quantum cosmologies and the question of entropy. Phys. Rev. D 78, 023515 (2008) [arXiv:0803.4484]

    Google Scholar 

  11. L. Mersini-Houghton, Notes on Time’s Enigma [arXiv:0909.2330]

    Google Scholar 

  12. W. Kaminski, J. Lewandowski, The flat FRW model in LQC: The self-adjointness. Class. Quant. Grav. 25, 035001 (2008) [arXiv:0709.3120]

    Google Scholar 

  13. D.L. Wiltshire, An introduction to quantum cosmology, in Cosmology: The Physics of the Universe, ed. by B. Robson, N. Visvanathan, W.S. Woolcock (World Scientific, Singapore, 1996) pp. 473–531 [gr-qc/0101003]

    Google Scholar 

  14. M. Bojowald, Large scale effective theory for cosmological bounces. Phys. Rev. D 75, 081301(R) (2007) [gr-qc/0608100]

    Google Scholar 

  15. M. Bojowald, Dynamical coherent states and physical solutions of quantum cosmological bounces. Phys. Rev. D 75, 123512 (2007) [gr-qc/0703144]

    Google Scholar 

  16. M. Bojowald, H. Hernández, A. Skirzewski, Effective equations for isotropic quantum cosmology including matter. Phys. Rev. D 76, 063511 (2007) [arXiv:0706.1057]

    Google Scholar 

  17. M. Bojowald, A. Tsobanjan, Effective constraints for relativistic quantum systems. Phys. Rev. D 80, 125008 (2009) [arXiv:0906.1772]

    Google Scholar 

  18. M. Bojowald, Loop quantum cosmology. Living Rev. Relativity 11, 4 (2nd July 2008) [gr-qc/0601085] http://www.livingreviews.org/lrr-2008-4

  19. K. Banerjee, G. Date, Discreteness corrections to the effective hamiltonian of isotropic loop quantum cosmology. Class. Quant. Grav. 22, 2017–2033 (2005) [gr-qc/0501102]

    Google Scholar 

  20. M. Bojowald, Loop quantum cosmology and inhomogeneities. Gen. Rel. Grav. 38, 1771–1795 (2006) [gr-qc/0609034]

    Google Scholar 

  21. M. Bojowald, The dark side of a patchwork universe. Gen. Rel. Grav. 40, 639–660 (2008) [arXiv:0705.4398]

    Google Scholar 

  22. M. Bojowald, Inverse scale factor in isotropic quantum geometry. Phys. Rev. D 64, 084018 (2001) [gr-qc/0105067]

    Google Scholar 

  23. T. Thiemann, QSD V: Quantum gravity as the natural regulator of matter quantum field theories. Class. Quantum Grav. 15, 1281–1314 (1998) [gr-qc/9705019]

    Google Scholar 

  24. M. Bojowald, D. Cartin, G. Khanna, Lattice refining loop quantum cosmology, anisotropic models and stability. Phys. Rev. D 76, 064018 (2007) [arXiv:0704.1137]

    Google Scholar 

  25. W. Nelson, M. Sakellariadou, Lattice refining loop quantum cosmology and inflation. Phys. Rev. D 76, 044015 (2007) [arXiv:0706.0179]

    Google Scholar 

  26. W. Nelson, M. Sakellariadou, Lattice refining LQC and the matter hamiltonian. Phys. Rev. D 76, 104003 (2007) [arXiv:0707.0588]

    Google Scholar 

  27. M. Bojowald, Consistent loop quantum cosmology. Class. Quantum Grav. 26, 075020 (2009) [arXiv:0811.4129]

    Google Scholar 

  28. A. Ashtekar, T. Pawlowski, P. Singh, Quantum nature of the big bang: Improved dynamics. Phys. Rev. D 74, 084003 (2006) [gr-qc/0607039]

    Google Scholar 

  29. G.J. Olmo, P. Singh, Covariant effective action for loop quantum cosmology a la Palatini. J. Cosmology Astropart. Phys. 0901, 030 (2009) [arXiv:0806.2783]

    Google Scholar 

  30. G. Date, S. Sengupta, Effective actions from loop quantum cosmology: Correspondence with higher curvature gravity. Class. Quant. Grav. 26, 105002 (2009) [arXiv:0811.4023]

    Google Scholar 

  31. T.P. Sotiriou, Covariant effective action for loop quantum cosmology from order reduction. Phys. Rev. D 79, 044035 (2009) [arXiv:0811.1799]

    Google Scholar 

  32. M. Bojowald, G. Hossain, Cosmological vector modes and quantum gravity effects. Class. Quantum Grav. 24, 4801–4816 (2007) [arXiv:0709.0872]

    Google Scholar 

  33. M. Bojowald, G. Hossain, Quantum gravity corrections to gravitational wave dispersion. Phys. Rev. D 77, 023508 (2008) [arXiv:0709.2365]

    Google Scholar 

  34. M. Bojowald, G. Hossain, M. Kagan, S. Shankaranarayanan, Anomaly freedom in perturbative loop quantum gravity. Phys. Rev. D 78, 063547 (2008) [arXiv:0806.3929]

    Google Scholar 

  35. M. Bojowald, G. Hossain, M. Kagan, S. Shankaranarayanan, Gauge invariant cosmological perturbation equations with corrections from loop quantum gravity. Phys. Rev. D 79, 043505 (2009) [arXiv:0811.1572]

    Google Scholar 

  36. M. Bojowald, T. Harada, R. Tibrewala, Lemaitre-Tolman-Bondi collapse from the perspective of loop quantum gravity. Phys. Rev. D 78, 064057 (2008) [arXiv:0806.2593]

    Google Scholar 

  37. M. Bojowald, J.D. Reyes, Dilaton gravity, poisson sigma models and loop quantum gravity. Class. Quantum Grav. 26, 035018 (2009) [arXiv:0810.5119]

    Google Scholar 

  38. M. Bojowald, J.D. Reyes, R. Tibrewala, Non-marginal LTB-like models with inverse triad corrections from loop quantum gravity. Phys. Rev. D 80, 084002 (2009) [arXiv:0906.4767]

    Google Scholar 

  39. J.M. Bardeen, Gauge-invariant cosmological perturbations. Phys. Rev. D 22, 1882–1905 (1980)

    Google Scholar 

  40. D. Langlois, Hamiltonian formalism and gauge invariance for linear perturbations in inflation. Class. Quant. Grav. 11, 389–407 (1994)

    Google Scholar 

  41. E.J.C. Pinho, N. Pinto-Neto, Scalar and vector perturbations in quantum cosmological backgrounds. Phys. Rev. D 76, 023506 (2007) [arXiv:hep-th/0610192]

    Google Scholar 

  42. B. Dittrich, J. Tambornino, A perturbative approach to Dirac observables and their space-time algebra. Class. Quant. Grav. 24, 757–784 (2007) [gr-qc/0610060]

    Google Scholar 

  43. B. Dittrich, J. Tambornino, Gauge invariant perturbations around symmetry reduced sectors of general relativity: Applications to cosmology, Class. Quantum Grav. 24, 4543–4585 (2007) [gr-qc/0702093]

    Google Scholar 

  44. K. Giesel, S. Hofmann, T. Thiemann, O. Winkler, Manifestly Gauge-Invariant General Relativistic Perturbation Theory: I. Foundations. Class. Quant. Grav. 27, 055005 (2010) [arXiv:0711.0115]

    Google Scholar 

  45. K. Giesel, S. Hofmann, T. Thiemann, O. Winkler, Manifestly Gauge-Invariant General Relativistic Perturbation Theory: II. FRW Background and First Order. Class. Quant. Grav. 27, 055006 (2010) [arXiv:0711.0117]

    Google Scholar 

  46. F.T. Falciano, N. Pinto-Neto, Scalar perturbations in scalar field Quantum cosmology. Phys. Rev. D 79, 023507 (2009) [arXiv:0810.3542]

    Google Scholar 

  47. J. Puchta, Master thesis, Warsaw University

    Google Scholar 

  48. P. Dzierzak, P. Malkiewicz, W. Piechocki, Turning Big Bang into Big Bounce: I. Classical Dynamics. Phys. Rev. D 80, 104001 (2009) [arXiv:0907.3436]

    Google Scholar 

  49. P. Malkiewicz, W. Piechocki, Turning big bang into big bounce: Quantum dynamics. Class. Quant. Grav. 27, 225018 (2010) [arXiv:0908.4029]

    Google Scholar 

  50. W.F. Blyth, C.J. Isham, Quantization of a Friedmann universe filled with a scalar field. Phys. Rev. D 11, 768–778 (1975)

    Google Scholar 

  51. M. Artymowski, Z. Lalak, L. Szulc, Loop quantum cosmology corrections to inflationary models. J. Cosmology Astropart. Phys. 0901, 004 (2009) [arXiv:0807.0160]

    Google Scholar 

  52. J. Mielczarek, The Observational Implications of Loop Quantum Cosmology. Phys. Rev. D 81, 063503 (2010) [arXiv:0908.4329]

    Google Scholar 

  53. M. Bojowald, What happened before the big bang? Nat. Phys. 3, 523–525 (2007)

    Google Scholar 

  54. M. Bojowald, Harmonic cosmology: How much can we know about a universe before the big bang? Proc. Roy. Soc. A 464, 2135–2150 (2008) [arXiv:0710.4919]

    Google Scholar 

  55. A. Corichi, P. Singh, Quantum bounce and cosmic recall. Phys. Rev. Lett. 100, 161302 (2008) [arXiv:0710.4543]

    Google Scholar 

  56. M. Bojowald, Comment on Quantum bounce and cosmic recall. Phys. Rev. Lett. 101, 209001 (2008) [arXiv:0811.2790]

    Google Scholar 

  57. A. Corichi, P. Singh, Reply to ‘Comment on Quantum Bounce and Cosmic Recall, Phys. Rev. Lett. 101, 209002 (2008) [ arXiv:0811.2983]

    Google Scholar 

  58. C. Kiefer, H.D. Zeh, Arrow of time in a recollapsing quantum universe. Phys. Rev. D 51, 4145–4153 (1995) [gr-qc/9402036]

    Google Scholar 

  59. A. Aguirre, S. Gratton, Steady-state eternal inflation. Phys. Rev. D 65, 083507 (2002) [astro-ph/0111191]

    Google Scholar 

  60. A. Aguirre, S. Gratton, Inflation without a beginning: A null boundary proposal. Phys. Rev. D 67, 083515 (2003) [gr-qc/0301042]

    Google Scholar 

  61. S.M. Carroll, J. Chen, Spontaneous Inflation and the Origin of the Arrow of Time (2004) [hep-th/0410270]

    Google Scholar 

  62. D. Brizuela, G.A. Mena Marugan, T. Pawlowski, Big Bounce and inhomogeneities (2009). Class. Quant. Grav. 27, 052001 (2010) [arXiv:0902.0697]

    Google Scholar 

  63. M. Martín-Benito, L.J. Garay, G.A. Mena Marugán, Hybrid quantum gowdy cosmology: Combining loop and fock quantizations. Phys. Rev. D 78, 083516 (2008) [arXiv:0804.1098]

    Google Scholar 

  64. M. Novello, S.E.P. Bergliaffa, Bouncing cosmologies. Phys. Rep. 463, 127–213 (2008)

    Google Scholar 

  65. R. Vaas, Time before Time - Classifications of universes in contemporary cosmology, and how to avoid the antinomy of the beginning and eternity of the world (2004) [physics/0408111]; see also R. Vaas, Time after time - big bang cosmology and the arrow of time (2012), this volume

    Google Scholar 

  66. M. Bojowald, A. Skirzewski, Effective equations of motion for quantum systems. Rev. Math. Phys. 18, 713–745 (2006) [math-ph/0511043]

    Google Scholar 

  67. M. Bojowald, A. Skirzewski, Quantum gravity and higher curvature actions. Int. J. Geom. Meth. Mod. Phys. 4, 25–52 (2007) [hep-th/0606232]; in Proceedings of Current Mathematical Topics in Gravitation and Cosmology (42nd Karpacz Winter School of Theoretical Physics), ed. by A. Borowiec, M. Francaviglia

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSF grant PHY0748336 and a grant from the Foundational Questions Institute (FQXi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bojowald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bojowald, M. (2012). A Momentous Arrow of Time. In: Mersini-Houghton, L., Vaas, R. (eds) The Arrows of Time. Fundamental Theories of Physics, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23259-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23259-6_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23258-9

  • Online ISBN: 978-3-642-23259-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics