Skip to main content

Efficient Computation of Persistent Homology for Cubical Data

  • Chapter
  • First Online:
Topological Methods in Data Analysis and Visualization II

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

In this paper we present an efficient framework for computation of persistent homology of cubical data in arbitrary dimensions. An existing algorithm using simplicial complexes is adapted to the setting of cubical complexes. The proposed approach enables efficient application of persistent homology in domains where the data is naturally given in a cubical form. By avoiding triangulation of the data, we significantly reduce the size of the complex. We also present a data-structure designed to compactly store and quickly manipulate cubical complexes. By means of numerical experiments, we show high speed and memory efficiency of our approach. We compare our framework to other available implementations, showing its superiority. Finally, we report performance on selected 3D and 4D data-sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajaj, C.L., Pascucci, V., Schikore, D.: The contour spectrum. In: Proceedings of IEEE Visualization, pp. 167–174 (1997)

    Google Scholar 

  2. Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness and persistence for images. In: Proceedings of IEEE Visualization, vol. 16, pp. 1251–1260 (2010)

    Google Scholar 

  3. Biasotti, S., Cerri, A., Frosini, P., Giorgi, D., Landi, C.: Multidimensional size functions for shape comparison. J. Math. Imaging Vis. 32(2), 161–179 (2008)

    Article  MathSciNet  Google Scholar 

  4. Carr, H., Snoeyink, J., van de Panne, M.: Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree. Comput. Geom. 43(1), 42–58 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, C., Kerber, M.: An output-sensitive algorithm for persistent homology. In: Proceedings of the 27th annual symposium on Computational geometry 207–215 (2011)

    Google Scholar 

  6. Chen, C., Kerber, M.: Persistent homology computation with a twist. In: 27th European Workshop on Computational Geometry (EuroCG 2011) (2011)

    Google Scholar 

  7. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Computer Assisted Proofs in Dynamics: CAPD Homology Library, http://capd.ii.uj.edu.pl.

  9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. MIT, MA (2009)

    MATH  Google Scholar 

  10. Edelsbrunner, H., Harer, J.: Computational topology, an introduction. American Mathematical Society, RI (2010)

    MATH  Google Scholar 

  11. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Freedman D., Chen C.: Algebraic topology for computer vision, Computer Vision. Nova Science (to appear)

    Google Scholar 

  13. Freudenthal, H.: Simplizialzerlegungen von beschränkter Flachheit. Ann. Math. 43(3), 580–582 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gyulassy, A., Natarajan, V., Pascucci, V., Hamann, B.: Efficient computation of morse-smale complexes for three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 13(6), 1440–1447 (2007)

    Article  Google Scholar 

  15. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational homology, vol. 157 of Applied Mathematical Sciences. Springer, Berlin (2004)

    Google Scholar 

  16. Kedenburg, G.: Persistent Cubical Homology. Master’s thesis, University of Hamburg (2010)

    Google Scholar 

  17. Kershner, R.: The number of circles covering a set. Am. J. Math. 61(3), 665–671 (1939)

    Article  MathSciNet  Google Scholar 

  18. Milosavljevic, N., Morozov, D., Skraba, P.: Zigzag persistent homology in matrix multiplication time. In: Proceedings of the 27th annual symposium on Computational geometry (2011)

    Google Scholar 

  19. Morozov, D.: Dionysus: A C++ library for computing persistent homology. http://www.mrzv.org/software/dionysus/

  20. Morozov, D.: Persistence algorithm takes cubic time in worst case. BioGeometry News. Dept. Comput. Sci., Duke Univ., Durham, NC (2005)

    Google Scholar 

  21. Mrozek, M., Wanner, T.: Coreduction homology algorithm for inclusions and persistent homology. Comput. Math. Appl. 2812–2833 (2010)

    Google Scholar 

  22. Mrozek, M., Zelawski, M., Gryglewski, A., Han, S., Krajniak, A.: Homological methods for extraction and analysis of linear features in multidimensional images. Pattern Recogn, 45(1), 285–298 (2012). doiL 10.1016/j.patcog.2011.04.020

    Google Scholar 

  23. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, CA (1984)

    MATH  Google Scholar 

  24. Pascucci, V., Scorzelli, G., Bremer, P.-T., Mascarenhas, A.: Robust on-line computation of reeb graphs: simplicity and speed. ACM Trans. Graph. 26(58), 1–8 (2007)

    Google Scholar 

  25. Strömbom, D.: Persistent homology in the cubical setting: theory, implementations and applications. Master’s thesis, Luleå University of Technology (2007)

    Google Scholar 

  26. Zong, C.: What is known about unit cubes. Bull. Am. Math. Soc. 42(2005), 181–211 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Science Fund (FWF) grant no. P20134-N13 and the Austrian COMET program. The first author is also supported by the Foundation for Polish Science IPP Programme “Geometry and Topology in Physical Models,” co-financed by the EU European Regional Development Fund, Operational Program Innovative Economy 2007–2013.

The authors would like to thank Prof. Herbert Edelsbrunner and Dr. Michael Kerber for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wagner, H., Chen, C., Vuçini, E. (2012). Efficient Computation of Persistent Homology for Cubical Data. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds) Topological Methods in Data Analysis and Visualization II. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23175-9_7

Download citation

Publish with us

Policies and ethics